HIMALAYAN GARHWAL UNIVERSITY UTTARAKHAND

STUDY AND EVALUATION SCHEME OF BACHELOR OF SCIENCE (PCM)

Academic Session 2017-18
(2) M

Syllabus
 B.Sc. (PCM) Semester - I

S.No.	Subject Code	Subject Name	Effetive Teaching			Cre dits	Evaluation Scheme		
					P		Internal	End	Total Marks
				rs/			Assessment	Term	
1	$\begin{gathered} \hline \text { PCM } \\ 101 \end{gathered}$	English Communication		2	-	2	30	70	100
2	$\begin{gathered} \hline \text { PCM } \\ 102 \end{gathered}$	Mechanics	3	1	-	4	30	70	100
3	$\begin{gathered} \hline \text { PCM } \\ 103 \end{gathered}$	Organic Chemistry Inorganic Chemistry	3	1	-	4	30	70	100
4	$\begin{gathered} \hline \text { PCM } \\ 104 \\ \hline \end{gathered}$	Differential Calculus	5	1	-	6	50	100	150
5	$\begin{gathered} \text { PCM } \\ 152 \end{gathered}$	Mechanics-Lab (Practical)	-	-	4	4	15	35	50
6	$\begin{gathered} \hline \text { PCM } \\ 153 \end{gathered}$	```Organic Chemistry & Inorganic Chemistry-Lab (Practical)```	${ }_{-}$	${ }^{-}$	4	4	15	35	50
Total			13	3	8	24	170	380	550

B.Sc. (PCM) Semester - II

S.No.	Subject Code	Subject Name	Effetive Teaching			Cre dits	Evaluation Scheme		
				$\frac{1}{s /}$	Peek		Internal Assessment	$\begin{array}{\|l\|} \hline \text { End } \\ \text { Term } \end{array}$	Total Marks
1	$\begin{aligned} & \hline \text { PCM } \\ & 201 \\ & \hline \end{aligned}$	Environmental Science	2	-	j	2	30	70	100
2	$\begin{aligned} & \hline \text { PCM } \\ & 202 \end{aligned}$	Electricity, Magnetism and EMT	3	1	-	4	30	70	100
3	$\begin{aligned} & \hline \text { PCM } \\ & 203 \end{aligned}$	Chemical Energetics, Functional Group Organic Chemistry-I	3	1	-	4	30	70	100
4	$\begin{aligned} & \hline \text { PCM } \\ & 204 \end{aligned}$	Differential Equations	5	1	-	6	50	100	150
5	$\begin{aligned} & \hline \text { PCM } \\ & 252 \end{aligned}$	Electricity, Magnetism and EMT-Lab (Practical)	-	-	4	4	15	35	50

6	PCM 253	Chemical Energetics, Functional Group Organic Chemistry-I-Lab (Practical)	-	-	4	4	15	35
50								

B.Sc. (PCM) Semester - III

S.No.	Subject Code	Subject Name	Effetive Teaching			Cre dits	Evaluation Scheme		
			L		P		Internal	End	Total Marks
			Hours/Week				Assessment	Term	
1	PCM 301	(Skill Enhancement Course-I) SEC-I	2	${ }^{-}$	-	2	30	70	100
2	$\begin{aligned} & \hline \text { PCM } \\ & 302 \end{aligned}$	Thermal Physics and Statistical Mechanics	3	1	-	4	30	70	100
3	$\begin{gathered} \hline \text { PCM } \\ 303 \end{gathered}$	Solutions, Phase Equilibria, Conductance, Functional Group Organic Chemistry-II	3	1	-	4	30	70	100
4	$\begin{gathered} \hline \text { PCM } \\ 304 \end{gathered}$	Real Analysis	5	1	-	6	50	100	150
5	$\begin{aligned} & \hline \text { PCM } \\ & 352 \end{aligned}$	Thermal Physics and Statistical Mechanics-Lab (Practical)	-	-	4	4		35	50
6	$\begin{aligned} & \hline \text { PCM } \\ & 353 \end{aligned}$	Solutions, Phase Equilibria, Conductance, Electrochemistry \& Biomolecules-Lab (Practical)	-			${ }^{4}$	15	35	50
Total			13	3	8	24	170	380	550

B.Sc. (PCM) Semester - IV

S.No.	Subject Code	Subject Name	Effetive Teaching			Cre dits	Evaluation Scheme		
					P		Internal	End	Total Marks
			Hours/Week				Assessment	Term	
1	PCM 401	(Skill Enhancement Course-2) SEC-2	2	-	-	2	30	70	100
2	$\begin{aligned} & \hline \text { PCM } \\ & 402 \\ & \hline \end{aligned}$	Waves and Optics	3	1	-	4	30	70	100
3	$\begin{gathered} \hline \text { PCM } \\ 403 \end{gathered}$	Chemistry of sand p-block elements, States of matter \& Chemical Kinetics	3	1	-	4	30	70	100
4	$\begin{gathered} \hline \text { PCM } \\ 404 \end{gathered}$	Algebra	5	1	-	6	50	100	150
5	$\begin{aligned} & \hline \text { PCM } \\ & 452 \\ & \hline \end{aligned}$	Waves and Optics-Lab (Practical)	-	-	4	4	15	35	50
6	$\begin{gathered} \hline \text { PCM } \\ 453 \end{gathered}$	Chemistry of sand p-block elements, States of matter \& Chemical KineticsLab (Practical)	${ }_{-}$	-	4	4	15	35	50
Total			13	3	8	24	170	380	550

B.Sc. (PCM) Semester - V

S.No.	Subject Code	Subject Name	Effetive Teaching			Cre dits	Evaluation Scheme		
				T 1	P		Internal Assessment	$\begin{aligned} & \hline \text { End } \\ & \text { Term } \end{aligned}$	Total Marks
1	Elective	(Skill Enhancement Course-3) SEC-3	2			${ }^{2}$		70	100
2	$\begin{gathered} \hline \text { Elective- } \\ 1 \text { (DSE) } \\ \hline \end{gathered}$	Discipline Specific Elective-1 (DSE-1)	3	1		-4	30	70	100
3	$\begin{aligned} & \text { Elective- } \\ & 2 \text { (DSE) } \\ & \hline \end{aligned}$	Discipline Specific Elective-2 (DSE-2)	3	1	-	4	30	70	100
4	$\begin{aligned} & \hline \text { Elective- } \\ & 3 \text { (DSE) } \\ & \hline \end{aligned}$	Discipline Specific	5	1	-	6	50	100	150
5	$\begin{gathered} \hline \text { Elective } \\ \text { (Lab) } \end{gathered}$	Discipline Specific Elective-1 (DSE-1) Lab	-	-	4	4	15	35	50
6	$\begin{gathered} \hline \text { Elective } \\ \text { (Lab) } \end{gathered}$	Discipline Specific Elective-2 (DSE-2) Lab	-	-	4	4	15	35	50
Total			13	3	8	24	170	380	550

B.Sc. (PCM) Semester - VI

S.No.	Subject Code	Subject Name	Effetive Teaching			$\begin{aligned} & \text { Cre } \\ & \text { dits } \end{aligned}$	Evaluation Scheme		
			L		P		Internal	End	Total Marks
			Hours/Week				Assessment	Term	
1	Elective	(Skill Enhancement Course-4) SEC-4	2	-	-	2	30	70	100
2	$\begin{aligned} & \hline \text { Elective- } \\ & 1 \text { (DSE) } \\ & \hline \end{aligned}$	Discipline Specific Elective-1 (DSE-1)	3	1	-	4	30	70	100
3	$\begin{aligned} & \text { Elective- } \\ & 2 \text { (DSE) } \\ & \hline \end{aligned}$	Discipline Specific Elective-2 (DSE-2)	3	1	-	4	30	70	100
4	$\begin{aligned} & \hline \text { Elective- } \\ & 3 \text { (DSE) } \end{aligned}$	Discipline Specific Elective-3 (DSE-3)	5	1	-	6	50	100	150
5	$\begin{gathered} \text { Elective } \\ \text { (Lab) } \end{gathered}$	Discipline Specific Elective-1 (DSE-1) Lab	-	-	4	4	15	35	50
6	$\begin{gathered} \hline \text { Elective } \\ \text { (Lab) } \end{gathered}$	Discipline Specific Elective-2 (DSE-2) Lab	-	${ }^{-}$	4	4	15	35	50
Total			13	3	8	24	170	380	550

Skill Enhancement Course (any four) (Credit: 02 each) - SEC 1 to SEC 4
SEMESTER-III (SEC-1: Opt any one)
SEC 301- Physics Workshop Skills
SEC 302- Fuel
SEC 303- Integral Calculus

SEMESTER-IV (SEC-2: Opt any one)

SEC 401- Applied Optics
SEC 402- Basic Analytical Chemistry
SEC 403- Theory of Equations

SEMESTER-V (SEC-3: Opt any one)

SEC 501 - Electrical circuit network Skills
SEC 502 - Pharmaceutical Chemistry
SEC 503 - Probability and Statistics

SEMESTER-VI (SEC-4: Opt any one)

SEC 601- Basic Instrumentation Skills
SEC 602- Chemistry of Cosmetics \& Perfumes
SEC 603- Graph Theory

Discipline Specific Elective papers (Credit: 06 each) opt any three subject from Vth sem \& VIth Sem :

SEMESTER-V

DSE 501: Digital and Analog circuits and Instrumentation
DSE 502: Polymer Chemistry
DSE 503: Matrices
DSE 504: Solid State Physics
DSE 505: Applications of Computer in Chemistry

SEMESTER-VI

DSE 601: Elements of Modern Physics
DSE 602: Instrumental Methods of Chemical Analysis
DSE 603: Complex Analysis
DSE 604: Numerical Methods
DSE 605: Green Chemistry

SEMESTER-I

PCM 101: English Communication

(Credits 2)
Unit 1: Theory of communication, types and modes of communication
Introduction. Definitions and function of communication, Need for effective communication, Process of communication, Barrier to communication, Kinds of communication:
intrapersonal, personal, group and mass verbal and non-verbal communication.

Unit 2: Listening and speaking skills

Types of listening, developing effective listening skills, Academic listening (Lectures), Listening to talks and presentation, Monologue, dialogue, group discussion, miscommunication, interview, public speech, Pronunciation, accent and intonation and rhythm.

Unit 3: Reading skills
Skimming, scanning, summary, paraphrasing, comprehension. ${ }^{\phi}$

Introductory English Grammar

Parts of Speech, Tenses, punctuation, Common ertors in English.

Unit 4: Writing Skills: Social and Official Correspondence

Enquiries complaints and replies, Letters to the editor, Social appeals in the form of letter/pamphlets, Standard business Letter, Email drafting and etiquettes, preparing agenda and writing minutes for meetings

Unit 5: Career skills
Job application, Cover letters, Bio-data, CV and Resume and effective profiling, Mock interviews Group discussions.

Suggested Readings:

I. Prasad, P. The functional Aspects of Communication Skills, Delhi.
2. Scn, leena. Communication Skills, Prentice Hall of India, New Delhi.
3. McCarthy, MichaeL English Vocabulary in Use, Cambridge University Press.
4.Rajinder Pal and Prem Lata. English Grammar and Composition, Sultan Chand Publication

PCM 102: Mechanics
(Credits 4)

Unit 1: Vectors

Vector algebra. Scalar and Vector products. Derivatives of a vector with respect to a parameter.
Ordinary Differential Equations: $1^{\text {st }}$ order homogeneous - differential equations order homogeneous differential equations with constant coefficients.

Unit 2: Laws of Motion

Frames of reference Newton's Laws of motion. Dynamics of a system of particles. Centre of Mass.

Momentum and Energy: Conservation of momentum. Work and energy. Conservation of energy. Motion of rockets.

Rotational Motion: Angular velocity and angular momentum. Torque. Conservation of angular momentum.

Unit 3: Gravitation

Newton's Law of Gravitation. Motion of a particle in a central force field (motion is in a plane, angular momentum. is conserved, areal velocity is constant). Kepler's laws (statement only). Satellite in orbit and applications. Geosynchronous orbits. Weightlessness Basic idea of global positioning system (GPS)

Unit 4: Fluids

Surface tension: Synclastic and anticlastic surface - Excess of pressure - Application of spherical and cylindrical drops and bubbles - variation of surface tension with temperature Jaegar's method. Viscosity: Viscosity - Rate flow of liquid in a capillary tube Poiscuille's formula - Determination of coefficient of viscosity of a liquid - Variations of viscosity of a liquid with temperature lubrication.

Elasticity: Hooke's law - Stress-strain diagram - 作lastic moduli-Relation between classic constants - Poisson's Ratio-Expression for Poisson's ratio in terms of elastic Constants Work done in stretching and work done in twisting a wire - 'Twisting couple on a cylinderDetermination of Rigidity modulus by static torsion - torsional pendulum- Determination of Rigidity modulus and moment of inertia - q, n and o by Searles method

Unit 5:-Special Theory of Relativity:

Constancy of speed of light. Postulates of Special theory of Relativity. Length contraction. dilation. Relativistic addition of velocities.

Suggested Readings:

1.University Physics. FW Sears, MW Zemansky and HD Young 13/c, 1986. Addison— Wesley
2.Mechanics Berkeley

Physics coursc,v. 1 :Charles kittel, et. A1. 2007, Tata McGraw- Hill.
3. Physics Resnick, Halliday \& Walker 9/e, 2010, Wiley
4. University Physics, Ronald Lane Reese, 2003, Thomson Brooks/Cole.

PCM 103: Atomic Structure, Bonding, Gencral Organic Chemistry \& Aliphatic . Hydrocarbons

Unit I : inorganic Chemistry-I

Atomic Structure: Review of: Bohr's theory and its limitations, dual behaviour of matter and radiation, de-Broglie's relation, Heisenberg Uncertainty principle Hydrogen atom spectra. Need of a new approach to Atomic structure.

What is Quantum mechanics? Time Independent Schrodinger equation and meaning of various terms in it. Significance of Ψ and Ψ^{2} Schrodinger equation for hydrogen atom. Radial and angular parts of the hydogenic wavefunctions (atomic orbitals) and their variations for Is $2 \mathrm{~s}, 2 \mathrm{p}$. 3 s 3 p and 3d orbitals (Only graphical representation). Radial and angular nodes and their significance. Radial distribution functions and the concept of the most probable distance with special reference to Is and 2 s atomic orbitals. Significance of quantum numbers, orbital angular momentum and quantum numbers m 1 and ms Shapes of s, p and d atomic orbitals nodal planes. Discovery of spin, spin quantum number (s) and magnetic spin quantum number (ms).

Rules for filling electrons in .various orbitals, Electronic configurations of the atoms. Stability of half- filled and completely filled orbitals, concept of exchange energy. Relative energies of atornic orbitals Anomalous electronic configurations.

Unit 2 : Chemical Bonding and Molecular Structure

lonic Bonding: General characteristics of ionic bonding Energy considerations in ionic bonding. lattice energy and solvation energy and their . importance in the context of stability and solubility of ionic compounds. Statement of Born-Lande êquation for, calculation of lattice energy. Born-Haber cycle arid its applications, polarizing power and polarizability. Fajan's rules. ionic character in covalent compounds, bond moment, dipole moment, and percentage ionic character.

Covalent bonding: VB Approach: Shapes of same inorganic moleculles and, ions on the basis of VSEPK and hybridization with suitable examples of linear, trigonal planar square planar. tetrahedral, trigonal bipyrarnidal and octahedral arrangernents.

Concept of resonance and resonating structures in various inorganic and organic compounds. Mo Approach: Rules for the LCAO method, bonding and antibonding MOs and their characteristics for s-s, s-p and p-p combinations of atomic orbitals; nonbonding combination of orbitals Mo treatment of homonuclear diatornic molecules of 1st and 2nd periods (including idea of s-p mixing) and heteronuclear diatomic molecules such as CO, NO and NO'. comparison of VB and Mo approaches.

Unit 3 :Organic Chemistry-I

Fundamentals of Organic Chemistry

Physical Effects, Electronic Displacements: Inductive Effect, Electromeric Effect Resonance and Hyperconjugation. Cleavage of Bonds: Homolysis and Heterolysis. Structure, shape and reactivity of organic molecules: Nucleophiles and electrophiles. Intermediates: Carbocations, Carbanions and free radicals.
strength of organic acids and bases: Comparalive study with emphasis on factors affecting pK values. Aromaticity: Benzenoids and Huckel's rule.

Unit 4 : Stereochemistry

Conformations with respect to ethane, butane and cyclohexane. Interconversion of Wedge Formula, Newmann, Sawhorse and Fischer representations. Concept of' chirality (upto two carbon atoms). Configuration: Geometrical and Optical isomerism; Enantiomerism, Diastereomerisrn and Meso compounds). Threo and erythro; D and L; cis irons nomenclature; CIP Rules: R/S (for upto 2 chiral carbon atoms) and E/Z Nomenclature (For upto two C C systems).

Unit 5: Aliphatic Hydrocarbons

Functional group approach for the following reactions (preparations \& reactions) to the student in context to their structure.

Alkanes: (Upto 5 Carbons). Preparation: Catalytic hydrogenation, Wurtz reaction, Kolb"s synthesis, from Grignard reagent. Reactions: Free radical Substitution: Halogenation.

Alkenes: (Upto 5 Carbons) Preparation: Elimination reactions: Dehydration of alkenes and dehydrohalogenation of alkyl halides (Saytzeff's rule); cis alkenes (Partial catalytic hydrogenation) arid trans alkenes (Birch reduction). Reactions: cis-addition (alk. KMnO 4) and trans-addition (bromine), Addition of HX (Markownikoff's and anti- Markownikoff's addition), Hydration, Ozonolysis, oxymecuration demercuration, Hydroboration-oxidation.

Alkynes: (Upto 5 Carbons) Preparation: Acetylene from CaC_{2} and conversion into higher alkynes; by dehalogenation of tetra halides afid dehydrohalogenation of vicinaldihàlides. Reactions: formation of metal acetylides, addition of bromine and alkaline KMnO 4 . ozonolysis and oxidation with hot alk. KMnO 4 .

Suggested Readings:

I . J. D. Lee: A new Concise Inorganic Chemistry, Re B, S.
2. F. A. Cotton \& G. Wilkinson: Basic Inorganic Chemistry, John Wiley.
3. Douglas, McDaniel and Alexader: Concept and Models in Inorganic Chemistry, John Wiley.
4. James S. Huheey, Ellen Keiter and Richard Keiter: Inorganic Chemistry:
5. T.W. Graham Solomon: organic Chemistry, John Wiley and Sons.
6. Peter Sykes; A Guide Book to Mechanism in Organic Chemistry, Orient Longrnan.
7. E.L. Eliel: Stereochemistry of Carbon Compounds, Tata McGraw Hill.
8. L.L. Finar: Organic Chemistry (Vol. I \& II) E. L: B. S

PCM 104: Differential Calculus

Limit and Continuity (ε and δ definition), Types of discontinuities, Differentiability of functions, Successive differentiation, Leibnitz's theorem, Partial differentiation, Euler's theorem on homogeneous functions.

Unit-2

Tangents and normals, Curvature, Asymptotes, Singular points, Tracing of' curves. Parametric representation of' curves and tracing of' parametric curves, Polar coordinates and tracing of curves in polar coordinates.

Unit-3

Rolle's theorem, Mean Value theorems, Taylor's theorem with Lagrange's and Cauchy's forms of remainder Taylor's series, Maclaurin's series of $\sin x, \cos x, e X, \log (1+x),(1+x)^{m}$, Maxima and Minima, Indeterminate forms.

Books Recommended

1. I. Anton, I, Bivens and S. Davis, Calculus, John Wiley and Sons, Inc., 2011.
2. G.B. Thornas and R.L.. Finney, Calculus, Pearson Education, 2007.

PCM 152: Mechanics-Lab

(Credits 2)
1 . Measurements of length (or diameter') using vernier caliper, screw gauge and Travelling microscope.
2. To determine the Height of a Building using a Sextant.
3. To determine the Moment of Inertia of a Flywheel.
4. To determine the Young's Modulus of a Wire by Optical Lever Method.
5. To determine the Modulus of Rigidity ofa Wire by Maxwell's needle.
6. To determine the Elastic Constants of a Wire by Searle's method
7. To determine g by Bar Pendulum.
8. To determine g by Kater's Pendulum.
9. To determine g and velocity for a freely falling body using Digital Timing Technique 10. To study the Motion of a Spring and calculate (a) Spring Constant (b) Value of g

Suggested Readings:

1. Advanced Practical Physics for students, B. L. Flint and H. T. Worsnop, 1 971, Asia Publishing Hlouse.
2. Advanced level Physics Practicals, Michael Nelson and Jon M. Ogbohe, $4^{\text {th }}$ Edition, reprinted 1 985, Heinemann Educational Publishers
3. A Text Book of Practical Physics Indu Prakash and Ramakrishna, $11^{\text {th }}$ Edition, 2011, Kitab Mahal, New Delhi.

PCM 153: Atomic Structure, Bonding, General Organic Chemistry \& Aliphatic Hydrocarbons Lab (Credits 2) Section A: Inorganic Chemistry - Volumetric Analysis

1. Estimation of sodium carbonate and sodium hydrogen carbonate present in a mixture.
2. Estimation of oxalic acid by titrating it with KMnO 4 .
3. Estimation of water of crystallization in Mohr's salt by titrating with KMnO 4.
4. Estimation of Fe (II) ions by titrating it with $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O} 7$ using internal indicator.
5. Estimation of Cu (II) ions iodometrically using $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O} 3$.

Section B: Organic Chemistry

I. Detection of extra elements ($\mathrm{N}, \mathrm{S}, \mathrm{Cl}, \mathrm{Br}, 1$) in organic compounds (containing upto two extra elements).
2. Separation of mixtures by Chromatography:. Measure the Rf value in each case (combination of two compounds to be given).
(a) Identify and separate the components of a given mixture of 2 amino acids (glycine, aspartic acid, glutamic acid, tyrosine or any other amino acid) by paper chromatography
(b) Identify and separate the sugars present in the given mixture by paper chromatography.

Suggested Readings:

1. Vogel's Qualitative Inorganic Analysis, A.I. Vogel, Prentice Hall, $7^{\text {th }}$ Edition.
2. Vogel's Quantitative Chemical Analysis, A.I. Vogel, Prentice Hall, $6^{\text {th }}$ Edition.
3. Textbook of Practical Organic Chemistry, A.I. Vogel , Prentice Hall, $5^{\text {th }}$ edition.
4. Practical Organic Chemistry, F. G. Mann. \& B. C. Saunders, Orient Longman.

SEMESTER - II

PCM 201: Environmental Science
(Credits 2)
Unit - I : Introduction to Environmental Science
Multidiscipiinary nature of Environniental Sciences; Scope and importance; Concept of sustainability and sustainable development. Ecosystems: What is an ecosystem? Structure and function of ecosystem; Energy flow in an ecosystem: food chains., food webs and ecological succession. Case studies of the following ecosystems: a. Forest ecosystem b. Grassland ecosystem c. Desert ecosystem d. Aquatic ecosystems (ponds, streams, lakes, rivers, oceans, estuaries)

Unit - 2: Natural Resources

Renewable and Non-renewable Resources ' Land resources and land use change: Land degradation, soil erosion and desertification. Deforestation: Causes and impacts due to mining, darn building on environment, forests, biodiversity and tribal populations. Water: Use and Over exploitation of surface and grounds water, flood, droughts, conflicts over water (international and interstate).Energy resources, renewable and non renewable energy resources, use of alternate energy sources, growing energy needs, case studies.

Uuit-3 : Environmental Pollution

Environmental pollution : types, causes, effects and controls; air; water; soil and noise pollution. Nuclear hazards and human health risks. Solid waste management. Control measures of urban and industrial waste. Pollution case studies.

Unit-4: Environmental Policies \& Practices

Climate change, global warming, ozone Layer depletion, acid rain and impacts on human communities and agriculture Environment Laws: Environment Protection Act 1986; Air (Prevention \& Control of Pollution) Act 1981; Water (Prevention and control of Pollution) Act 1974; Wildlife Protection Act 1972; Forest Conservation Act 1980. International agreements: Montreal protocol, Kyoto protocol and Convention on Biological Diversity (CBD). Nature reserves, tribal populations and tights, and human wildlife conflicts in Indian context.

Uuit-5: Human Communities and the Environment

Human population growth: Impacts on environment, human health and welfare. Resettlement and rehabilitation of project affected persons; case studies. Disaster management: floods, earthquake, cyclones and landslides. Environmental movements: Chipko, Silent valley, Bishnois of Rajasthan. Environmental ethics: Role of Indian and other religions and cultures in environmental conservation. Environmental communication and public awareness, case studies (e.g., CNG vehicles in Delhi).

Unit-6: Field work

Visit to an area to document environmental assets: river / Forest / flora / fauna, etc.Visit to a local polluted site-
Urban/Rural/Industrial/Agricutural. Study of common plants, insects, birds and basic principles of Identification. Study of simple ecosystems-pond, river, lake, forest patch, grassland, Delhi Ridge, etc.

Suggested Readings:

1. Carson, R. 2002, Silent Spring. Houghton Mifflin Harcourt.
2. Gadgil, M. \& Guha, R. 1993. This Fissured Land: An Ecological History of India. Univ. of California Press.
3, Gleeson, B. and Low, N. (eds.) 1999. Global Ethics arid Environment, London, Routledge.
3. Gleick, P. H. 1993. Water in Crisis. Pacific Institute For Studies in Dev., Environment \& Security. Stockholm Env. Institute, Oxford Univ. Press.
4. Groom, Martha .J,, Gary K. Meffe, and Carl Ronald Carroll. Principles of Conservation Biology. Sunderland: Sinauer Associates, 2006.

Unit-1: Vector Analysis:
Scalar and Vector product, gradient, divergence, Carl and their significance, Vector Integration, Line, surface and volume integrals of Vector fields, Gauss-divergence theorem and Stoke's theorem of vectors.

Unit-2: Electrostatics:

Electrostatic Field, electric flux, Gauss's theorem of electrostatics. Applications of Gauss theorem- Electric field due to point charge, infinite line of charge, uniformly charged spherical shell and solid sphere, plane charged sheet, charged conductor. Electric potential as line integral of electric field, potential duc to a point charge, electric dipole, uniformly charged spherical shell and solid sphere. Calculation of electric field from potential. Capacitance of an isolated spherical conductor. Parallel plate, spherical and cylindrical condenser. Energy per unit volume in electrostatic field. Dielectric medium, Polarisation, Displacement vector. Gauss's theorem in dielectrics. Parallel plate capacitor completely filled withdielectric.

Unit-3: Magnetism:

Magnetostatics: Biot-Savart's law \& its applications- straight conductor, circular coil. solenoid carrying current. Divergence and curl of magnetic field. Magnetic vector potential. Ampere's circuital lawzoer
Magnetic properties of materils: Magnetibe tntensite magnetic induction, permeability, magnetic susceptibility. Bref introduction of dia-, para-gind ferro-magnetic materials

Unit 4: Electromagnetic Induction:

Faraday's laws of electromagnetic induction, Lenz's law, self and mutual inductance. L of single coil, M of two coils. Energy stored in magnetic field.

Unit 5: Maxwell's equations and Electromagnetic wave propagation:
Equation of continuity of current, Displacement current, Maxwell's equations, Poynting vector, energy density in electromagnetic field, electromagnetic wave propagation through vacuum and isotropic dielectric medium, transverse nature of EM waves, polarization.

Suggested Readings:

1. Electricity and Magnetism, Edward M. Purcell, 1986, McGraw-Hill Education..
2. Electricity and Magnetism, J.H. Fewkes \& J. Yarwood. Vol. I, 1991, Oxford Univ. Press.
3. Electricity and Magnetism, D C Tayal, 1988, Himalaya Publishing Housc.
4. University Physics, Ronald Lane Reese, 2003, Thomson Brooks/Cole.
5. D.J. Griffiths, Introduction to Electrodynamics, 3rd Edn, 1998, Benjamin Cummings.
Keactions (Chtorobenzene): Aromatic nucleophilic substitution (replacement by -OH group) and effect of nitro substituent, Benzyne Mechanism: $\mathrm{KNH}_{2} / \mathrm{NH}_{3}$ (or $\mathrm{NaNH}_{2} / \mathrm{NH}_{3}$). Reactivity and Relative strength of C-Halogen bond in alkyl, allyl, benzyl, vinyl and aryl halides.

PCM 203: Chemical Energetics, Equilibria \& Functional Organic Chemistry (Credits

Physical Chemistry-I

Unít 1: Chemical Energetics

Review of thermodynamics and the Laws of Thermodynamics.Important principles and definitions of thermochemistry. Concept of standard state and standard enthalpies of formations, integral and differential enthalpies of solution and dilution. Calculation of bond energy, bond dissociation energy and resonance energy from thermochemical data. Variation of enthalpy of a reaction with temperature - Kirchhoff's equation. Statement of Third Law of thermodynamics and calculation of absolute entropies of substances.

Unit 2: Chemical Equilibrium:

Free energy change in a chemical reaction. Thermodynamic derivation of the law of chemical equilibrium. Distinction between ΔG and ΔG°, Le Chatelier's principle. Relationships between $K_{p} . K_{c}$ and K_{x} for reactions involving ideal gases.
lonic Equilibria:Strong, moderate and weak electrolytes, degree of ionization, factors affecting degrec of ionization, ionization constant and ionic product of water. Ionization of weak acids and bases, pit scale, common ion effect. Salt hydrolysis-calculation of hydrolysis constant, degree of hydrolysis and pH for different salts. Buffer solutions, Solubility and solubility product of sparingly soluble salts - applications of solubility product principle.

Organic Chemistry-2

Unit 3: Aromatic hydrocarbons

Preparation (Case benzene): from phenol, by decarboxylation, from acetylene, from benzene sulphonic acid.
Reactions: (Case benzene): Electrophilic substitution: nitration, halogenation and sulphonation. Iriedel-Craft's reaction (alkylation and acylation) (upto 4 carbons on benzene). Side chain oxidation of alkyl benzenes (upto 4 carbons on benzene).

Unit 4: Alkyl and Aryl Halides

Nikyl Halides (Upto 5 Carbons) Types of Nucleophilic Substitution ($\mathrm{S}_{\mathrm{N}} 1, \mathrm{~S}_{\mathrm{N}} 2$ and $\mathrm{S}_{\mathrm{N}} \mathrm{i}$) reactions.
Preparation: from alkenes and alcohols.
Reactions: hydrolysis, nitrite \& nitro formation, nitrile \& isonitrile formation. Williamson's ether synthesis: Elimination vs substifution.

Aryl Halides Preparation: (Chloro, bromo and iodo-benzene case): from phenol, Sandmeyer \& Gattermann reactions.
Reacfions (Chlorobenzene): Aromatic nucleophilic substitution (replacement by -OH group) and effect of nitro substituent. Benzyne Mechanism: $\mathrm{KNH}_{2} / \mathrm{NH}_{3}$ (or $\mathrm{NaNH}_{2} / \mathrm{NH}_{3}$). Reactivity and Relative strength of C-Halogen bond in alkyl, allyl, benzyl, vinyl and aryl halides.

Unit 5
Alcohols, Phenols and Ethers (Upto S Carbons)
Alcohots: Preparaion: Preparation of $1^{10}, 2^{n}$ and 3^{n} alcohols: using Grignard reagent, Dster hydrolysis, Reduction of aldehydes, ketones, carboxylic acid and esters.
Reactions: With sodium, HX (Lucas test), estcrification, oxidation (with PCC, alk, KMnO_{4}, acidic dichromate, conc. HNO_{3}). Oppeneauer oxidation Diols: (Upto 6 Carbons) oxidation of diols. Pinacol-Pinacolone rearrangement.

Phenols: (Phenol case) Preparation: Cumene bydroperoxide method, from diazonium salts. Reactions: Electrophilic substitution: Nitration, halogenation and sulphonation. ReimerTiemann Reaction, Gattermann-Koch Reaction, Houben-Hoesch Condensation, Schotten Baumann Reaction.

Ethers (aliphatic and aromatic): Cleavage of ether with HI.
Aldehydes and ketones (aliphatic and aromatic): (Formaldehye, acetaldehyde, acetone and benzaldehyde)

Preparation: from acid chlorides and from nitriles.

Reactions - Reaction with $\mathrm{HCN}, \mathrm{ROH}, \mathrm{Nal} \mathrm{SO}_{3}$. Nl_{2}-G derivatives, Iodoform test. Aldol Condensation, Cannizzaro's reaction, Wittig reaction, Benzoin condensation. Clemensen reduction and Wolff Kishner reduction. Meerwein-Pondorff Verley reduction.

Suggested Readings:

1. T. W. Graham Solomons: Organic Chemistry, John Wiley and Sons.
2. Peter Sykes: A Guide Book to Mechamism in Organic Chemistry. Orient Longman.
3. L.L. Finar: Organic Chemistry (Vol. \& II), E. L. B. S.
4. R. T. Morrison \& R. N. Boyd: Organic Chemistry, Prentice Hall.
5. Arun Bahl and B. S. Bahl: Advanced Organic Chemistry, S. Chand.
G. M. Barrow: Physical Chemistry Tata McGraw-Hill (2007).
6. G. W. Castellan: Physical Chemistry 4th Edn. Narosa (2004).
7. J. C. Kotz, P. M. Treichel \& J. R. Townsend: General Chemistry Cengage L.ening India Pvt. Ltd', New Delhi (2009).
8. B. H. Mahan: University Chemistry 3rd Ld. Narosa (1998).
9. R, H. Petrucci; General Chemistry Sth Ed. Macmillan Publishing Co.: New York (1985).

Unit-1
First order exact differential equations, Integratiag factors, rules to find an integrating factor, First order higher degree equations solvable for: \%, p. Methods for solving higher-order differential equations. Basic theory of linear differential equations; Wronskian, and its properties. Solving a differential equation by reducing its order:

Unit-2

Linear homogenous equations with constant coefficients, Linear non-homogenous equations, The method of variation of parameters: The Cauchy-Euler equation, Simultaneous differential equations, Total differential equations.

Unit 3

Order and degree of partial differential equations, Concept of linear and non-linear partial differential equations, Formation of first order partial differential equations, Linear partial differential equation of fiust order, Lagrange's me
Suggested Readings:

1. Shepley L. Ross, Differential Byuations, 3 rd Ed, John Wiley and Sons, 1984.
2. I, Sneddon, Elements of Partial Differential Equations, McGraw-Hill, International

- Edition 1967.
 Curreni; and (d) checking electrical fises.

2. Ballistic Galvanometer:
(i) Measurement of charge and cirrent senstivity
(ii) Meásurement of CDR
(iii) Determie a hightesistañce by leakage Method
(iv) To determine Sel laductance of a Col by Rayleigh's Method.
3. "To compare capacitances using De'Sauty's bridge.
4. Measurenent of feld stengh B and it veftation in a solenoid (Deternine ($\mathrm{B} /(\mathrm{dax})$
5. To study the Characteristics of a Series ROCirctit,
6. To study the a series LCR circuit and determine its (a) Resonain Frequency: (b) Quality Factor
7. To study paralle LGR circuit and determine afs (a) Abifecesonait fequency and (b) Quality factor Q
8. To determiniea Low Resistance by Carey Foster's Bridge,
9. To verify the Thevenin and Norton thecreer.

Suggested Readings:

1. Advanced Practical Physice for studeats, B. L. Flint \& HTW Worsiop, 1971, Asiti Publisting -House.
2. A Text Book or Practical Pbysics, Indu Prakash and Ramakrishtio It Edition, 201. Kitab Mahal, New Dehi.
3 Advanced level Physicss Practicals; Mictael Nelson and Jon M. Ogboring \& ${ }^{\text {be }}$ Edition, reprinted 198s. Heinemann Educational Publishers

PCM 253: Chenical Energetics, Equilibria \& Tinctional Organic Chemistry Lab

(Credits 2)
Thermochemistry

1. Determination of heat capacify of colormeter for different volumes:
2. Determination of enthalpy of necteralization of hydrochilotio acid with sodium hididroxide
3. Deternination of enthalpy of ionization of acetio acid.
4. Deternination of integral enthalpy of solution of salts ($\mathrm{KNO}_{2} \mathrm{NH}_{4} \mathrm{NH}$).
5. Deteminination of enthilpy of tydration of copper sulphate:
6. Study of the solubility of benzoic acid in water and determinationof ΔL

Tonic equilibria

pH measurements
a) Measurenen of pH of different solutions like aerated dinks, fruit juices, shampoos and soaps fuse dilute solutions of soaps and shampoos to prevent dannage to the glass electrode) using pli-meter.
b) Breparation of buffer solutions:
(i) Sodum acetatcaceticacid

Ammonlum chloride-ammontium hydrefeter

Measirement of heeph of buffer solutions and comparison of the values with theoretical
valucs.

Organic Chemistry

F. Purification of onganic compounds by cystallization (from water and alcohol) and
distillation?
2. Criteria of Rurify: Determination of melfing and boiling points.
3. Preparations Mechanism of various reactions inyolved to be discussed. Recrystallisation, deternination of meltine point and calculation of quantitative yield tube done
(a) Bromination of Phenol/Antilige
(b) Benzoylation of aninesplienols
(c) Oxime and 2,4 dinitrophenyllydrazone of aldehydéketone

PCM 302: Thernal Physicsand Statistical Mechanics

Unith:-Laws of Thermodynanices "

 First law and inter hal energy, conversion of hieat indo work, Yarious Thermodynanical Processes, Application of Tisst Lawi Cencual Relation betwece Cpe Cr. Woll Done during Isolhortal and
 Second lavi \& Entropy Carnolts cycle \& theorem, Entropy changes in reversible \& Afrechersible
 absoline zeréa.

Unitas-Thermodyinamic Potectitals; Enthalpy, Gibbs; Helmholtz and Intennal Energy functions, Maxwells relation \& applications - Joule-Thompson Effect, Clausius-Clipeypor Equation,

Unils:-Kinctie Theofy of Gases: Derivation of Maxwell's law' of gistribution of velocitites and its
 and Diffusion (for verticas 'case), Law of equipartion of energy (no defivation) and ots applications to specific real of gases, mono-atonitc and diatonic gases
 Density, Derivation of Planck's taw; Deduction of Wien's distribution lawy Rayleight Jeans Jaw Stefin Boltrmann Law and Wien's displacenent tow from Planel's law.

Unit5:-Statistical Mechanics: Maxwell-Boliznana law - distribution of velocily - Quantum
 distribution law - plioton gas - comparison of thitee statistics.

Relerence Booksi

- The thial Phystes, S: Garg R Bansal and C Ghosth, 1993, Tata McGraw-Ifith,
- A Treatise on Heat, Meghad Saha, and B,N, Srivastave, 1969, Indian Press.
- Themofynanics, Enico Eermi, 1956, Courier Dover Piblicitions
 1988, Natosa
- University Physics Rowid Lane Reese, 2003, Thonson Brooks/Colle.

LCM 303: Solutions, Phase Equilibrium, Conductance, Electrochenistry \& Functional Group Organic Chemistry-L
 (Credits 4)

Section A: Plossical Chemistrys 2

Solutions

Theimodynamies of ideal solutions: Ideal solutions and Raoult's law, deviations from Raoult's law a hon-ideal solutions. Vapour pressure-composition and temperature-composition curves of idecil and non-ideal solutions: Distillation of solutions, Lever rule, Azeotropes,

Partial miscibility of liguids Critical solution temperatures, effect of impurity on partial miscibility of liquids. Immiscibility of liguids- Principle of stean distillation. Nernst distribution Law and its applicationis, solvent extraction.

Phase Equilibrimim

Phases, components and degrees of freedom of a system, criterit of phase equilibrium. Gibbs Phase Rule and its thermodynamie derivation. Derivation of Clausius - Clapeyron equation and its importance in phase equilibria. Plase diagrams. of one-component systems (water and sulphur) and two component systems involving euteetics, congruent and incongruent melting points (lead-silver, FeCli-H2O and Na-K only).

Conductance:

Conductivity, equivalent and molar conductivity and their varation with dilution for weak and strong electrolytes. Kohlrausch law off independent migration of ions.

Transferénee number and its experimental determination using Hittorf and Moving boundary methöds: lonic mobility. Applications of conductance measurements determination of degree of ionibation of weak electrolyte, solubility and spobubility products of spatingly soluble salts, ionic produet of water; hydrolysis constant of a sall. Conductonietric entrettone (only acid-base).

Electrochemisiry

Reversible and irreversible cells Concept of EMF of a cell. Measurement of EMF of a cell. Nerisi equation and its importance. Types of clectrodes. Standard electrode potential. Piectrochemicial series. Themodymamics of a reversible coll, calculation of themodynamio propertics: $A O_{s} A H$ and $A S$ from EMF data,

Calculation of equilibrium constant from EMF data Concentration cells with transference and without transferchec, Liquid junction potential and salt bridge.pH determination using hydrogen slectrode and quinhydronc electrode.

Polentionecric titrations -qualitative treatment (acid-base and oxidation-reduction only),

Section B: Organic Chemistry-3

Functional group approach for the following reactions (preparations \& reactions) to be studicd it context to their stitucture.

Carboxylic acids and their derivatives

Carboxylic acids (aliphatic and aromatic)
Preparation: Acidic and Alkaline hydrolysis of esters.
Reactions: Hell - Vohlard-Zclinsky Reaction.
Carboxylic acid derivatives (aliphatic): (Upto 5 carbons)
Preparation: Acid chlorides, Anhydrides, Esters and Amides from acids and their interconversion.

Reactions: Comparative study of nucleophilicity of acyl derivatives. Reformatsky Reaction, Perkin condensation.

Amines and Diazonium Salts

Amines (Aliphatic and Aromatic): (Upto 5 carbons)
Preparation: from alkyl halides, Gabriel's Phthalimide synthesis, Hofinann Bromamide reaction.

Reactions: Hofmann vs. Saytzeff elimination, Carbylamine test, Hinsberg test, with HNO2. Schotten ... Baumann Reaction. Electrophilic sposjitation (case apilinc): nitration, bromination, sulphonation.

Diazonium salts: Preparation: from aromatie amines.

Reactions: conversion to benzene, phenol, dyes.

Amino Acids, Peptides and Proteins:

Preparation of Amino Acids: Strecker synthesis using Gabriel's phthalimide synthesis. Zwitterion, Isoelectric point and Electrophoresis Reactions of Amino acids: ester ol COOH group, acetylation of $-\mathrm{NH}_{2}$ group, complexation with Cu^{2+} ions, ninhydrin test. Overview of Primary, Secondary, Tertiary and Quaternary Structure of proteins. Determination of Primary structure of Peptides by degradation 1:dmann degradation (N terminal) and C-terminal (thiohydantoin and with carboxypeptidase enzyme). Synthesis of simple peptides (upto dipeptides) by N -protection (t-butyloxycarbonyl and phthaloyl) \& C-activating groups and Merrifield solid-phase synthesis.

Carbohydrates: Classification, and General Properties, Glucose and Fructose (open chain and cyclic structure), Determination of configuration of monosaccharides, absolute configuration of Ghucose and Fructose, Mutarotation, ascending and descending in monosaccharides. Structure of disacharrides (sucrose, cellobiose, maltose, lactose) and polysacharrides (starch and cellulose) excluding their structure elucidation. .

Reference Books:

1. G. M. Barrow: Physical Chemistry Tata McGraw - Hill (2007).
2. G. W. Castellan: Physical Chemistry 4th Ed. Narosa (2004).
3. J. C, Kotz, P. M. Treichel, J. R. Townsend, General Chemistry, Cengage Learning India Pyt. L.td.: New Delhi (2009).
4. B. 11. Mahan: University Chemistry, 3rd Edn. Narosa (1998).
5. R. 11. Petrucci, General Chemistry, Sth Edn., Macmillan Publishing Co.: New York (1985).
6. Morrison, R. T. \& Boyd, R. N. Organic Chemistry, Dorling Kindersley (India) Pvt. Ltd. (Pearson Education).
7. Finar, 1. 1.. Organic Chemistry (Volume 1), Dorling Kindersley (India) Pvt. Ltd. (Pearson Education).
8. Finar, I. L. Organic Chemistry (Volume 2), Dorling Kindersley (India) Pvt. Ltd. (Pearson Education).
9. Nelson, D. L. \& Cox, M. M. Lehninger's Principles of Biochemistry 7th Ed., W.H. Freeman.
10. Berg. J. M., Tymoczko, J. L. \& Stryer, F. Biochemistry 7th Ed., W. H. Freeman

 convergere. Matert, Mterst

Rode Recomainded

 Lite 32000
 Mathentitice Springer Verlige 200\%

CCM 354 Thermal Physies and Statictical Mechanies Lab

(Credits 2)

3. Th dermine Semo Comant

 micthodid

 Bride

Reference Books

 Howse

 Nathall New Dethi
 Publicoliden.

PCM 353: Solutions, Phase Equilibrium, Conductance, Electrochemistry \&
Biomolecules-Lab
(Credits 2)

Section A? PhysicalChemistry.
Distribution
Study of the equilibrium of one of the following reactions by the distribution method:
$\mathrm{I}_{2}(\mathrm{aq})+\mathrm{I}^{\prime}(\mathrm{aq}) \geqslant \mathrm{I}_{\mathrm{i}}(\mathrm{aq})$
$\mathrm{Cu}^{2 *}(\mathrm{aq})+x \mathrm{NH}_{2}(\mathrm{aq})=\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{x}\right]^{2+}$
Phase equilibria
a) Construction of the phase diagrain of binary system (simple.eutectic) using cooting eurves.
b) Detemination of the critical solution temperature and composition of the phenol water system and study of the effect of impurities on it.
c) Study of the variation of mutual solubility temperature with concentration for the phenol water system and determination of the critical solubility temperature.

Conductance

1. Determination of cell constant
2. Determination of equivalent conductarice degrec of dissociation and dissociation constant of a weak acid.
III Perform the following conductometrie titrations:
i. Strong acicid vs. strong base
ii_{3}. Weak scid vs, strong base

Potentiónctry

Perform the following potentiometric titrations:
i. Strong acid vs. strong base
ii. Weak acid vs, strong base
iiii: Potassium dichromate vs. Mohr's salt

Section B: Organic Chemistig:

I Systemätic Qualitative Organic Analysis ol Organic Compounds possessing monofunctional groups (COOH_{3}, phenolic, aldehydic, ketonic amide, nituo, 'amines) and preparation of one derivativẹ.

II

1. Separation of amino acids by paper chromatography
2. Determination of the concentration of glycinc solution by formylation method.
3. Titration curve of glycine
4. Action of salivary ainylase on starch
5. Bffect of temperature on the action of salivary amylase on starch.
6. Differentiation between a reducing/nonrcducing sugar.

Reference Books:

1. A.I. Vogel: Textbook of Practical Organic Chemistry, Prentice Hall, 5th Edn.
2. F. G. Mann \& B. C. Saunders: Practical Organic Chemistry, Orient Longman, 1960
3. B.D. Khosla: Senior Practical Physical Chemistry, R. Chand \& Co.
4. Ahluwalia, V.K. \& Aggarwal, R. Comprehensive Practical Organic Chemistry, Universities Press.

SHMESTKR-VB

PCom 402: Waves and Qjuics
(Gxaviduct
Unitty-Superposition of Two Collinear. Harmonic oscillationss Lincearity and :Superpasituss Principfe, (1):Oscilations having equal frequencies and (2) Oscillations haining dinerem frequenciers. (Breals):
Superpasition of Two Perpendicular Harmonic Oseilations: Graphical and Antylical Methods. . Fssatous ligures ($1: 1$ and 1.2) and their uses.

Tfititwawe Motions Generat Transverse waves on a string Travelling and standing waves un-a strings: "Niombat Modes of a string Group velocity. Phase velocity. Plane waves. spherfical waves Wave imiensity.

Oscillations: Simple harmonic motion. Diffetenial equation of SHM and its solutions. Kinelic ami Potchilal Encrey, Total Einergy and their time avoragess Daimped osciflations:

 antensity lesnels" - musical notes - musional scater Acousties of buildinges Reverberation and time spe
 Acoustic aspocets of halls and auditoria.
 3tinciple
 cxperiment. Doyd"s Mirrer and Fresnel"s. Biprism. Phase ehange on xeflection:" Stokes" treatmens.

 6f wavelengeh and reliactive index

Unitst-Michelson* ef wevelength(3) Wavelergth diffrchece(d) Refractive index (S) visibility of fringes.

Whitactions. Fraunhoter diffactions Single slit; Double Sliti Multiple slits \& Difiraetion aratiop.
 aithod a wive using halfiperiod zone annulysis.
pholurizations Transycrsc hature of light waves. Plane polariecd light - proctuction and andysis. Circular and elliptical polarization

Beference Books:

- Principles of Optics, B.K. Mathur: 1995° Gopal Printing
- Pundamentate of Opticss. IIR, Gulati and D.R. Khanab, 1991, R. Clanud Publicaltor
- UniversityPliysics.prysearsi MWhemansleyandl LD Young13/e, 1986.Addison- Weslcy

PCM 403: Chemistry of S-and P-Block Elements; States of Matter \& Chenical Kinetics

(Credits 4)

General Principles of Metallurgy

Chief modes of occurterice of metals based on standard electrode potentials. Ellingham diagrams for reduction of metal oxides using carbon as reducing agent.

Hydrometallurgy, Methods of purification of metals ($\mathrm{Al}, \mathrm{Pb}, \mathrm{Ti}_{2}, \mathrm{Fe}, \mathrm{Cu}, \mathrm{Ni}, \mathrm{Zn}$): electrolytic, oxidative refining: Kroll process, Parting process, van Arkel de Boer process and Mond's: process.

5 and p-Block Elements
Perodicity in \& and p-block elements with respect to electronic configuration, atomic and ionic size, iohization enthalpy, electronegativity (Pauling, Mulliken, and Alfred- Rochow seales). Allotropy in $\mathrm{C}, \mathrm{S}_{\mathrm{p}}$ and P .

Oxidation states with reference forements in unusual and rare oxidation states like carbides and nitrides) ineit pair effect, diagonal relationshîp and anomalous behaviour of frist menber of cactigroup,

Compounds of s and p-Block Elements

Hydrides and their classification (ionie; covalentiand interstitial), structure and properties with respect to stability of hydridesofop block elenents.
Concecpt of multicentre bonding (diborane).
Strueture, bonding and their important properties like oxidation/reduction; aceidic/basic nature of the following compounds and their applications in industrial, organic and environmental chemistry:

Hydrides of nitrogen $\left(\mathrm{NH}_{3}, \mathrm{~N}_{2} \mathrm{H}_{4}, \mathrm{~N}_{3} \mathrm{H}_{3}, \mathrm{NH}_{2} \mathrm{OH}\right.$)Oxoacids of $\mathrm{P} ; \mathrm{S}$ and Cl .
Halides and oxohalides $\mathrm{PCl}_{3}, \mathrm{PCl}_{5}$: SOCl_{2} and $\mathrm{SO}_{2} \mathrm{Cl}_{2}$

Section Br Physical Chemistry-3 (30 Lectures) Kinetic Theory of Gases

Postulates of Kinetic Theory of Gases and derivation of the kinetic gas equation.
Deviation of real gases from ideal behayiour, compressibility factor, causes of deviation. van der Waats equation of state for real gases, Boyle terpperature (derivation not required). Critical phenomera, erilicat constants and their calculation from van der Waals equation, Andrews isotherins of CO_{2}.

Maxwell Boltzmann distribution laws of molecular velocities and mólecular energiẹs
(graphic representation - derivation not required) and their importance.
Temperature dependence of these distributions. Most probable, average and root mean square velocities (no derivation), Collision cross section, collision number, collision frequency, collision diameter and mean free path of molecules. Viscosity of gases and effect of temperature and pressure on coefficient of viscosity (qualitative treatment only).

Liquids

Surface tension and its determination using stalagmometer. Viscosity of a liquid and determination of coefficient of viscosity using Ostwald viscometer. Effect of temperature on surface tension and coefficient of viscosity of a liquid (qualitative treatment only)

Solids

Forms of solids. Symmetry elements, unit cells, crystal systems, Bravais lattice types and identification of lattice planes. Laws of Crystallography - Law of constancy of interfacial angles, Law of rational indices. Miller indices. X Ray diffraction by crystals, Bragg's law. Structures of $\mathrm{NaCl}, \mathrm{KCl}$ and CsCl (qualitative treatment only). Defects in crystals. Glasses and liquid crystals.

Chemical Kinetics

The concept of reaction rates. Effect of temperature, pressure, catalyst and other factors on reaction rates. Order and molecularity of a reaction. Derivation of integrated rate equations for zero, first and second order reactions (both for equal and unequal concentrations of reactants). Half life of a reaction. General methods for determination of order of a reaction. Concept of activation energy and its calculation from Arrhenius equation.

Theories of Reaction Rates: Collision theory and Activated Complex theory of bimolecular reactions. Comparison of the two theories (qualitative treatment only).

Reference Books:

1. G. M. Barrow: Physical Chemistry Tata McGraw-~Hili (2007).
2. G. W. Castellan: Physical Chemistry 4th Edn. Narosa (2004).
3. J. C. Kotz, P. M. Treichel \& J. R. Townsend: General Chemistry Cengage Lening India Pvt. Ltd., New Delhi (2009).
4. B. H. Mahan: University Chemistry 3rd Ed. Narosa (1998).
5. R. H. Petrucci: General Chemistry 5th Ed. Macinillan Publishipg Co. New. York (1985).
6. J. D. Lee: A New Concise Inorganic Chemistry E.L.B.S.
7. F.A. Cotton \& G. Wilkinson: Basic Inorganic Chemistry, John Wiley
8. D. F. Shriver and P. W. Atkins: Inorganic Chemistry, Oxford University Press.

PCM 404: Algebra

Defuition and sxamples of groups, examples nfabelian and nori-abeliain groups, the grobur Zn of integers under addition modulo n and the group U(a) of units under muffiplication modulo ne Cyclic groups from number systems, complex roots of unity, circle group. the general finear group GLni (n, R), groups of syminetries of (i) an isosceles triangle; (ii) an equilateral uriangle,(iii) a rectangle, and (iv) a square the permutation group Sym (i), Group of qุúaternions.

Subgroups; eyclic subgroups, the concept of subgroup generated by a subset and the commutator subgroup of group, exainples of subgroups including: the center of a group. Cosets, Index of subgroup; Lagrange's theorem, order of an element; Normal subgroups their delintion, examples and characterizations Quotient groups.

Defintion and examples of rimgs examples of commutative and non-commutative rings: rings from number systems, Znt the ring of integers modufont ing of real quaternions, rings of matrices; polynomial rings, and tings of continuous functions. Subrings and ideals, Integral domains and fields, examples of fields: Zp, O, R, and C.

Books Recommended

1. John B. lraleigh. A Fivse Compse in Abstract Algebra; 7th Ed, Pearson, 2002,
2. M. Artin, Abstraer Algebra, 2nd Ed. Pearson, 2011.
3. Joseph A Gallian, Contemporary Absinact Agebra, uth Ed. Narosa, 1999.
4. George E Addrews Number Theory Hindustan Publishing Cotporation, 1984.

PCM 452: Waves and Opfics-Lab

2. To detentine the Frequency of an Electrically Maintained Puning Fork by Molde's Experiment and to verify y^{2} ? $=\mathrm{T}$ Law.
3. Too study Lissajous Figures
4. Pamilarization with Sehuster's focussing determinalion of angle of prismi,
5. To determine the Coefficient of Viscosity of water by Capillary Flow Method (Poiseuille's method).
6. To determine the Refractive Index of the Material of a given Prism using Sodium Light.
7. To determine Dispersive Power of the Material of a given Prisism using Mercury Light
8. To determine the vace of Cauctly Constants of material of a prism.
2. Tre determine the Resolving Power of a Prismi.
10. To determine wavelengtr of sodium light using Fiesenel Biprism,
11. Too determine wavelength of sodium light using Newton"\$ Rings.
12. To determine the wavelengh of Lased light using Diffraction of Single Slit
13. To determine wavelength of (i) Soduim \& (2) Mcrcury light asing planie diffraction Grating
14. To determine the Resoling Power of a Plane Diffraction Grating,
15. To measure the intensity using photosensor and laser in difftaction paterns of single:and double slitis.

Reference Books:

 House.

- Advanced level Plysicić Practicils, Michiael Nelsoin and Join M. Ogborn, 4 Edition reptinted 1985, Heinemant Educational Publishers
 Mahal, Néw Defifi:

PCM 453: Chemistry of S- and P-Block Elements, States of Matter \& Chemical Kinctics- Lab

Section At Inorganic Chemistry

Semil-inicro qualitative ànalysis using H2S of mixturesm not more than four ionic species (two anions and (wo cations and excluding ninsoluble salts) out of the following:

Section B: Physical Chemistry.

(1) Surface tension measurement (use of organic solvent excluded).
a) Determination of the surface tension of a liquid or a dilute solution using a stafaginometer.
b) Study of the variation of surface tension of a detergent solution with concentration.
(1I) Viscosity measurement (use of organic solvients excluded).
a) Determination of the relative and absolute viscosity of a liquid or dilute solution using an Ostwald's viscometer.
b) Study of the variation of viscosity of an aquects solution with concentration of solute.

(III) Chernical Kinetics

Study the kinetics of the following reactions:

1. Initial rate inethod: lodide-persulphate reaction
2. Integrated rate:method:
A. Acid hydrolysis of methyl acetate with hydrochloric aeid.
b. Saponification of ethyl acetate.
c. Compare the strengths of HCl and $\mathrm{H}_{2} \mathrm{SO}$, by stadying kinetics of hydrolysis of methyl acetate

Reference Books:

- A.t, Vogel, Qualitative Inorganic Analysis, Prentice Hall, 7th Edn.
- A. Vogel, Quantifativé Chëmical Analysis; Prentice Hall; 6th Edn.
* B.D. Khosla, Sentor Practical Physical Chemistry, R. Chand \& Co:

Skill Enhancement Course (any four) (Credit: 02 each)-SEC 1 to SEC 4

SEMESTER-1I (Opt. any one) (SEC-1)

(Elective paper) SEC 301: Physics Workshop Skills

The aim of this course is wo enable the stadents to familiar and experience with warous mechamical and electrical tonls throwg hiands-om mode

Introduction: Measuring units. conversion to Sl and CGS . Pamiliarization with imeter seate; Vernier calliper, Screw gauge and their utility. Measure the dimension of a solid block, volume of cylfndricat beakerfglass, diameter of a thin 'wire, thickness of metal sheet, ete: Use of Sextant to the sasure hetght of buildings; mountains ette.

Mechanical Skil: Concept of workshop practice, Overview of mantifacturing inethods: easting foundry, machuining forming and welding lypes of welding joints and welding defects Coinmonmaterials ised for mabufacturing: like steel; copper, wron; metal sheets, composites and alloy wood. Concept of machine processing introduction to common machuine tools like lathè shaper drilling milling and surlace machines. Cutting tools, Jubricating oils. Cutting of a melal sheet using blade Smoothening of cutting edge of
sheet using file. Dritling of holes of different diameter in metal sheet and wooden block Use of bench vice and tools for fitting Make funnel using metal sheet.

Electrical and Electronic. Skills. Use of Multineter. Soldering of electrical circuits having discrete components (R, L_{2} C, diode) and ICs on PCB. Operation of oscilloscope. Making regulated power supply. Timer circuit. Electionice switich ssing trianisistor and felay;

Introduction to prime movers Mechanism, gear system, wheel, Fixing of gears with motor aixel. Levef mechanism, Lifting of heavy weight using lever: braking systems, pulleys working priniciple of power feneration systems. Denonstration of pulley experiment.

Reference Books:

- A text book in Electrical Technology - B L Therajea -S . Chand and Compny.
- Performance and design of AC machines - M.C. Say, ELBS Edn. -

 [ISBN: 0750660732]
- New Engineering Technology. Lawrence Smyth/Liam Heqniessy, The Educational Company of Ireland [ISBN: 0861674480]

Review of entrgy soupees (rencwable and nom-wenewable). Flassifieation of fiels tind fheif: valorific value.

Cool: Uses of coal (fuel and nonfuel) in various industries, its composition, earbonization of coal.Coal gas producer gas and water gas-composition and uses, Fractionation of coal tair, uses of coal tar bases chemicals, requisites of a good metalurgical coke, Coal gasification (Hydro gasification and Catalyfie gasification), Coal liquefaction and Solvent Refining.

Pervolemin and Petrochenhical Fidustry: Composition of crude petroleum, Refining and different. typer of petroleum products and their applications.

Fractional Distillation (Principle and process), Cracking (Thermal and catalytic coucking) Reforming Petroleum and non-petroleum fuels (0 PG, CNG, LNG biongas, fiels derived from bionass) fuel from waste, synthetic fuels (gaseous and liquids), clean fuels, Petrochemicals: Vinyl acetate Propylene oxide, Isoprene, Butadiene, Toluene and its derivatives Xylenc.

Lubitwire Classification of Lubricants lubiticating oils (conducting and non-conducting) Solid and semisolid hubricants, synthecic lubricants.

Properties of lubricants (viscosity index, cloud point, pore point) and their determination.

Reference Books::

- F. Stocchi. Moturival Chenismy, Vol -1. Eltis Horwood Lud. İK.
- P.C, Jain, M. dains, Enghecrimg Chemiviry Dhanpat Rai \& Sons, Delhi.
- B.K. Shama: Industrial Chemistrg Goel Publishing Housé Meerut.
(Elective paper) SEC 303: Integral Calculus
Integration by Partial fractions, integration of rational and irrational functions. Properties of definte Integirals, Reduction formulae for integrals of rational ${ }^{\text {otigonometric, }}$ exponential and logarithmic funetions and of their combinations.

Areas and lengths of eutves in the planes volumes and surfacespopisolids of revolution. Double and 'tiple integrals.

Books Recommended

1. G.B. Thomas und R.l. Finney; Calculus, 94 Fdi; Pearson Education, Dethi, 2005, 2. 1. Atiton, 1. Bivens and. \$. Davis, Calculus, John Wiley and Sons (Asia). P. Lid., 2002;

SEMESTER IV (Opt any one) (SEC-2)

(Clective paper) SLC 401 Applied Optics
 mininum theee sections.
(i) Sourecs and Detectors:

Lasers: Spontaneous: and stimulated enissions; Theory of laser. action, Binstein's coefficierits Light amplification, Characterization of laser beam, He-Ne laser; Semiconduetor laserso

Experrinents on Lascriss.

a. Determination of the suating radial spacing of the Compact Disc (CD) by fettection usinie He-Ne or solid state fasee.
6. To tind the width of the wire br width of the sllt using diffaction pattern oftamed bya He-Ne or solid state laser.
c. To lind the polarization ange of faser light using polarizer and analyzer
4. Thermal expansion of quartz using laser

Experiments on Semiconductor Sources and Detectors:

a: " Y-l characteristies ef LED
b. Study the characteristics of solid state: laser c. Study the chatacteristics of LDR
d. Whotovoliatic Cell
e: Chatacteristics of IR sensor

(ii) Pourier Opties

Concept of Spatial fiequiendy wifering, Fourier transforming property. of a thin lens

Experiments on Fourier Optics:

a. Tourier optic and image processing.

1. Optical inage additionsubiraction
2. Optical innage differcintiation
3. Fourier optical filtering
4. Construction of ain optical $4 f$ cystem
b. Fourier Transform Speetroscopy

Fourier Transform Spectroscopy (ETS) is: 3 powerfin method for measuring emission and absorption spectra, with wide application in atmospheric remote sensing NMR spectromety and Forensic secience.
Experinent.
To study the interference pattern from a Michelsön interferonteter as a fiurchtoby of mivmo separation in the interferometex. The tesulting. interferogram is the Pointer translom of the power spectrum of the source. Analysis of experimental interferograms allows pre to determine the transmission characteristics of severat interference filers. Competer simutation can also be done.

(iii) Holography

Basie principle and theory coherence, resolution, Types of hologeans, white light reffectign hologeam, application of holography in mieroscopy, interferometry and characte/ recognifion

Experiments on Holography sind interferometry:

1. Recording and reconstructing hologram es
2. Constructing a Michelson inter manometer oredrabry Perot oterfenometer
3. Measuring the refractive index of ait
4. Constructing a Şagnie interferometer
5. Constructing a Mach-Zehnder interferometer
6. White light Hologram

(iv) Photonicst Fibre Optics.

Optical fibres and their properties, Principal of light propagation through a fibre, The muinerical aperture, Attenuation in optical fibre and attenuation limit, Single mode and multimode fibres Fibre optic sensors: Fibre Brace Grating
Experiments on Photonics: Fibre Optics
at. To measure the numerical aperture of an optical fibre
b. To study the variation of the bending loss in a multimode fibre
c: To determine the mode field diameter (MFD) of fundamental mode in asingle-mode fibre by - measurements of its far field Gaussian pattern
d. "To measure the near fold intensity profile of a fibre and study" its refractive index profile.
e. Te determine the power loss at a splice between two multimode fibre

Reference Books?

- Fundamental of optics, $\mathbb{1}$, A. Jenkins \& H. E Whites 1981, rata McGräw hill.
* ASERS: Fundamentals \& applications K. Thyagratan \& AKGhatak, 2010. Tala McGraw Infill
- Fibre optics through experiments, M, R.Shenoy \$K.Khijwanis, etial, 2009; Viva Books
- Nonlinear Optics, Robert W. Boyd, (Chaptei-l). 2008, Elsevier.
- Optics; Karl Dieter MoIler, Learning by computing with model examples, 2007, Springer.
- Optical'Systerns and Processes Joseph Shamir, 2009, PHI Learning Pit, Lid.
- Optoelectronic Devices and Systems S.C. Gupta 200S, PIH Learning PVL Ltd.

(Elective paper) SEC 402: Basic Analytical Chemistry

(Credits 2):
Introduction: Introduction to Analytical Chemistry and ito interdisceiphingig nature. Concept of sampling. Importance of exceurneyp precision and sources of error in analytical measurements. Presentation of experimental data and results, tron the point of view of significant figures.

Analysis of soil: Composition of soil, Concept of pH and pH measurement. Complexometrie titrations, Chelation, Chelating agents, use of indicators
a. Determination of pH of soil samples.

b. Listimation of Calcium and Magnesium ions as Calcium carbonate by complexometric litrationi.

Analysis of water: Definition of pure water, sources responsible for contaminating water, water sampling methods, water purification methods.
a. Determination of pH , acidity and alkalinity of a water sample.
b. Determination of dissolved oxygen (DO) of a water sample.

Analysis of food products: Nutritional value of foods, idea about food processing and food preservations and adulteration.
a. Identification of adulterants in some common food items like coffee powder, asafoetida, chilli powder, turmeric powder, coriander powder and pulses, etc.
b. Analysis of preservatives and colouring matter.

Chromatography: Delinition, general introduction on principles of chromatography, paper chromatography, TLC etc.
a. Paper chromatographic separation of mixture of metal ion $\left(\mathrm{Fe}^{31}\right.$ and $\left.\mathrm{Al}^{3+}\right)$.
b. To compare paint samples by TLC method.

Ion-exchange: Column, ion-exchange chromatography etc,
Determination of ion exchange capacity of anion / cation exchange resin (using batch procedure if use of column is not feasible).

Analysis of cosmetics: Major and minor constituents and their function
a. Analysis of deodorants and antiperspirants, Al, Zn, boric acid, chloride, sulphate,
b. Determination of constituents of talcum powder: Magnesium oxide, Calcium oxide, Zinc oxide and Calcium carbonate by complexometric fitration.

Suggested Applications (Any one):

a. To study the use of phenolphthalein in trap cases.
b. To analyze arson accelerants.
c. To carry out analysis of gasoline.

Suggested Instrumental demonstrations:

a. Estimation of macro nutrients: Potassium, Calcium, Magnesitum in sort samplofloy fanc photometry.
b. Spectrophotometric determination of Iron in Vitamin / Dietary Tablets.
c. Spectrophotometric Identification and Determination of Caffeine and Benzoic Acid in Soft Drink.

Reference Books:

1. Willard, H. H. Instrumental Methods of Analysis, CBS Publishers.
2. Skoog \& Lerry. Instrumental Methods of Analysis, Saunders College Publications, New York.
3. Skoog. D.A.s. West D.M. \& Holler, F.J. Fundamentals of Analytical Chemistry 6: Ed, Suunders College Publishing, Fort Worth (1992).
'4. Harris, D. C. Ovinumaroe Chemical Analreis, W. It. Preeman.
4. Dean, 1. A. Anolyicoal Chimistry Notebook, McGraw Hill.

6: Day, R, A. \& Underwòod, A. L. Ouantizatjve Analysis, Prentice Hall of India:
7. Freifelder, D. Physical Biochemistry $2^{\text {nd }}$ Ed. W:H, Freeman and Co. N. Y, USA (1982)
8. Cooper, T.G. The Tools of Blochemistig, John Wiley and Sons, N.Y. USA. 16 (1977).
9. Vogel, A. 1. Vogèt 's Qughitainue Inorganic Analysis of Ed., Prentice Hall.
10. Vogel, A. I. Vogel's Ouanititive Chemical Analysis $6^{\text {in }}$ Ed. Prentice Hall.
11. Robinsoin, d.W. Undeggraduate Instrumental Analysis 's ${ }^{\text {th }}$ Ed., Marcel Dekker; Inc New York (1995).

(Elective paper) SEC 403: Theory of Equations

(Credits 2)
General properties of polynomials, Graphical representation of a polynomials, maximuin and mihimum values of a polynomials, Genéral properties of equations, Descarte's rule of signs positive and negative rule, Relation between the roots and the coefficients of equations.

Symmetric functions, Applications symmetric function of the roots. Transformation of equations. Solutions of reciprocal and binomial equations. Algebraic solutions of the cubic and biguadratic. Properties of the detived functions.

Books R̈ecommended

1. W:S Burnside and A. W, Pantparthe Thpory of Equptions, Dublin University Press, 1954. 2. C. C. MacDuffee, Theor of Equarionis 10ht Witey清 Sons Inc.s 1954.

SEMESTER-V (Opt: any one) (SEC 3)

(Elective paper) SWC 501: Electrical circuit network Skills
 netwoiks tind appliances Ihrough hands:ons unole

Basic Electricity Principles: Voltage. Current, Resistance, and Power; Ohnts tiw Series , parallel, "and series-parattel combinations. AC Electricity and DC Elcetricity. Familiarization with multimeter völmetere and ammeter:;

Understanding Electrical Circuits: Main eleciric eifcuit elements: and their combination. Rules to analyze DG sourced electrical circuits. Current and vollage drop across the DC eireut elements, Single-phase: end three-phase altemating current sowirees. Rules to analyze AC sourced electrical circuts Rëal tmaginary and complex power coinporients of AC source Pọver factor. Saving encrgy and money:

Electrical Drawing and Symbolss Drawing symbols. Blueprints. Reading Schematics. Ladder diagrans: Electrical Schematics, Power. circuits. Control eircuitsa Reading of circuit schematies Tracking -theie obnecitions of elements and identily curpent flow: and voltage drop,

Gencrators and Transformers: DC Power sources, AC/DC generaiors. Induciance y capacilance, and impedance: Operation of transformers:
 souirces to control heaters \& motors. Speed \& power of ace motor:

Solid-State Devices: Resisitors, indụctorss and capaçitors. Diode and rectifersi Components in Series or in shunt Response of inductors and capacitors whth DC or AC sources

Electrical Prọtection: Relays. Fuser and disconnéct switches\% Circuit breakers Overload devicess, Ground-fault protẹction Grounding and isoluting Phase reversal. Surge protection, Interfacing DC op AC sources to contron Fonnents frelay (hrotegtion device)

Electrical Wiring: Different types of conductors: and cables. Basics of wiringe-Star and delta ceomection. Voitage drop and losses across cables and conductors. Instruments to measure purrent; voltage, power in DC and AC circuits: Jnsulation, Solid and stranded dable Conduit Cable trays; Splices; wirenuts, crimps terminal blocks; spilit bolts, and solder. Preparation of exterision board.

Réference. Books:

- A text book in Blectrical Tectinology - BL Lheraja - 8 Chand \& Co.
- A text book of Electrical Technology - A \& Therala
- Performance and design of AC machines ." M.G.Say RLBES. Edn
(Elective paper) SEC 502: Phammacentical Chemistry

Driugs a Phtronceutionte

Dritg discovery, design and development Basie Retrosynthectic approach: Synthésis of the representative drugs of the following elasses analgesics agents, fintipyretic agents, antiinflammatory agents (Aspirin, paracetamol, Ibuprofen); antibiotics (Chlorainphenicol): antibacterial and antifungal agents (Sulphonamides; Sulphanethoxazol; Sulphacetamide, Trimethoprim); antiviral agents (Acyclovir), Central Nervous System agents (Phenobarbital, Diazepam), Cardiovascular (Glyceryl trinitrate); antilaprosy (D.apsone), HHY-AlDS related drugs (AZT-Zidovudine).

Permentation

Acrobic and anaerobic fermentation: Production of (i) Ethyl alcohol and citric acid, (ii) Antibiotics: Penieillin, Cephalosporin, Chloromycetin and Streptomycin, (iii) Lysinc Glutamic acid, Vitamin B2, Vitamin B12 and Vitamia C.

Practicals

1. Preparation of Aspirin and its analysis.
2. Preparation of magnesium bisilicate (Antacid).

Reference Books:

- 1. G.L. Patrick: Introduction to Medicinal Chemistriy. Oxford Unityersity Press, UK.

2. Hakishan, ViK Kapoor Medicinal and Phamaceutical Chemistry. Vallabh Prakashain, Pitampura, New Delhị.
3. William O, Foye, Thomas L., Lemke, David A. Wiliam: Principles of Medicinal Chemisiry. B.l. Wayerly Pvt, Led. New Delhi.

(Elective paper) SEC 503: Probability and Statistics

Sample space, probability axioms, real random variables (discrete and continuous), cumulative distribution function, probability más/density functions: mathematical expectation, moments, moment generating furnction, characteristic function, discrete distributions: uniform, binomial; Poisson, continuous distributions: uniform, normal, exponential.

Joint cumulative distribution function and its properties, joint probability density functions; matginal and conditional distributions, expectation of function of two random variables; conditional expectations, independent random variables.

Books Recommended:

1. Robert V. Rogg, Joseph:W. McKcan and Allen T', Craigg Introduction to Mathematioal Statistics, Pearson Education, Asia, 2007.
2. Irwin Miller and Marylees Miller, Johri. E. Freund, Mathemutical Statistics with Appicicaioñ. 7th Ed., Pearson Education, Asia, 2006.
3. Sheldon Ross, Introduetion to Probability Model, 96 Ed, Academic ploess, पndiaidreprint, 2007.

SEMIESTER-VI (Opt any one) (SEC-4)

(Elective paper) SEC 601: Basic Tnstrumentation Skills

(Credits 2)
Basic of Mcasurement: Instraments accuracy, precision sensitivity, resolution range ete. Errors in meaturements and loading effectz.
Multimeter: Principles of measurement.
of de voltage and de current, ac voluage, ac eurent and resistance, Specifications of a nultimeter and their significance.

Electronić Volfmeter: Advantage over cotiventional multmeter for voltage micasurement with respect to input impedance and sensitivity. Princtples of voltage, measuremeni (block diagrani only) Specifications of an electronic Voltmeter Muttineter and their signifieance AC millivoltmeter: Type of AC millivoltmeters: Amplifier rectiffer, and rectifief- amplifier. Block diagram ac. milivoltmeteryspecifications and their significance.

Cathode Ray Oscilloscope: Block diagram of basie CRO. Construthon of CRT, Bigetron guth. elcetrostatic focusing and acceleration (Explanation only no mathemalical treatiment); brief discussion on screen phosphor, visual persistence \& chemical composition. Time base operation. synchonization, Front panel controls. Specilications of aCRO and their significance

Use of CRO for the measurement of voltage (de and ae frequency, time period Special features of dưal frace, introduction to digital osciloscope, probes: Digital storage Oscitloscopes Block diagram and princiiple of working
Signal Generators and Analysis Instruments Block diagram, explanalion and speciffertions of low frequency signal generators: pulse generator, and function generator: Broe idea for icsting, specifications, Distortion factor meter, wave:analysis.

Impedanice Bridges \& Q-Meterst Block diagran of bridge, working principles: of basic (balaricing type) RIC bridge. Specifications of RIC bridge. Block diagram \& working principles of a Meter. Digital LACR bridges.

Digital Instruments: Principle and working of digital meters. Comparison of anulog, \& digital instruments: Characteristies of a digital meter: Working principles of digital voltmeter:

Digitai Multimeter: Block diagram and working of a digital multimeter. Working principle of fime interval, frequency and period measuremen using universal counted frequency countex tinne base stábility, accuracy and resolution.

The test of labskitis will be of the following test itemis:
4. Use of an oscilloscope,
2. CRO as a versatite measuring device.
3. Circuil tracing of Laboratory elcetronic equipment,
4. Use of Dleitai multimeter VTVM For measuring voltages.
5. Cicuit fracing of laboratory etoctronic equipment.
6. winding 1601 trans formet है
7. Stady the layout of ydetyed circiu in atra
8. Trouble shooting a checuit

9. Balancing of bridges

thatoratory Hxcerciscos

1. To posicrive the toading effec of a multimeter while measuring voltage across:a low resistance. and high resistance:
2. To observe the timutations of a muttimeter for measuring high frequency voltage and cturrents.
3. To-measue: Q of acoll and its dependence on frequency, using a Q-meteris
4. Measurement of voltage, requency time period and phase angle using CRO.

So Measurement of time period. frequency, average period using iniversal counter/fiequency counter.
6. 'Measurement of rise; fall and delay times using a CRO.
7. Measurement of distortion of a RF signal generator using distortion factor meter.
8. Mehisuremen of $\mathrm{K}_{\mathrm{f}} \mathrm{L}$ and C using a LCR bridge/universal bridge:

Open Ended Experiments:

1. Usinga Dual Trace Oscilloscope
2. Comverting the range of agiven measuring instrument (voltneter, ammeter)

Reference Books:

- A text book in Electrical Technology - B L. Theraja - S Chand and Co.
- Performance and dcsign of AC machines - M G Say EBBS Edn:
- Digital Cicuits and systems, Venugopal, 201 I. Tata MeGraw Hill:
* Logic circuit design, Shimon P. Vingron, 2012, Springer;
- Digital Electronics, Subrata Ghoshal, 2012; Cengage Learning.
- Efectronic Deviees and circuits, S, Salivahanari \& N. S.Kumar; 3. Ed 2012, Tata Me-OMaw H H
- Electronic circuits: Handbook of design ;and applications, U.Tietze, Ch.Scherik 2008 . Springer

(Elective paper) SEC602; Chemistryof Cosmefics \& Perfumes (Credit 2).

A general study including preparation and uses of the following: Hair dye, hair spray, shampoo. suntan lotions, face powder, lipsticks talcum powder, nail enamel, creams (cold, vanishing and shaving creams), antiperspirants and artificial flavours. Essential oils and their importance in cosmetic industries with reference to Eugenol, Geraniol, sandatwood oil, eucalyplus, rose oil, 2 -pheny! ethyl alcohol. Jasmone, Civetone; Muscone,

Practicals

1. Preparation of talcum powder.
2. Preparation of shampoo.
3. Preparation of enamels:
4. Preparation of hair remover:
5. Preparition of face cream.
6. Preparation of nail polishand nail polist remover.

Reference Boolss:

- E.Stocchit Industrial Chemistry, Vol - -1 Rlis Horwood Ltd. UR.
- P.C. Jain M. Jain Engineerng Chemistry Dhąnat Rai \& Sons, Delhi.
- B.K. Shamas Indeynial Chenisty, Goet Publishing Hóse, Meerut.

(Elective paper) SEC 603: Graph Theory

Definition, examples and basic properties of graphs, pseudographs, complete graphs, bi - partite graphs, isomorihism of graphs, paths and circuits, Eulerian circuils, Hamiltonian cycles, the adjacency matrix, weighted graph, travelling salesman's problem, shortest path, Dijkstra's algoritim, Floyd - Warshall algorithm.

Books Recommended:

1. Edgar G. Goodarite and Michael M. Parmenter, Discreete Mathematics with Graph Theory. 2nd.Ed. Pearson Education (Singapore) P. Lid., Fidian Reprint, 2003.
2. Rudolf Lidl and Genter Pilz Applied Absiract Algebra, 2nd Ed., Undergraduate Texts in Mathematics, Springer (SIE), Indian Sreprint; 2004.

Discipline Specific Elective papers (Credit: 06 each) opt any three subject from Vth sem K Vith Sem :

SEMESTER-V

(Elective paper) DSE 501: Digital and Analog Circuits and Instraments (Credits 4)

Unit-1 Digitat Creaits

Dimerence between Analog and Digital Circuts. Binary Numberss, Decimal to Binary and Binaryto Dectual Conversion: AND, OR and NOT Gates (Realization using Diodes and Transistor), NAND and NOR Gates as: Universal Gates. XOR and XNOR: Gates:
De Morgains Theorems. Böolean Laws Simplification of Logic Circout using Boolean Agebra: Fundamental Ppoducts Minterms and Maxierms. Converșion of a Truth Table into ait Equivalent Logic Circuit by (1) Sum of Products Method ard (2) Karnaugh Map.
Binary Addition. Binary Subtraction using 2's Complement Method). Half Adders and Full Adders and Subtractops, 4bil binary Adder-Sublractor.

Unit-2: Semiconductor Devices and Amplifiers:
Semiconductor Diodess p and n - type semiconductors, Barrier Formation in PN Junction Diodes Qualitative ldea 07 Current Flow Mechanism in Forward and Reverse Biased. Diode PN Junction and its characteristics. Static and Dynamic Résistance. Prineiple and structure of (1) LEDS (2) Photodiode (3) Solar Cell.
Bipolar Junction vansistors: $n-p-1$ and poh-p Trainsistors. Characteristics of: CB, CE and CE Conflgurations; Curent: gains α and β Relations between α and β. Load Line analysis of Transistor's DC Loat line and Q-point Active; Cutoff and Saturation Regions. Voltage Divider Bias Circuit for ClE Amplifief. H-parameter Equivalent Circuit. Analysis of a single-stage CE amplifier using. Hyorid Model, Input 'and Output Impedance, Current Voltage aind Power Gains. Class: $\mathrm{A}_{j} \mathrm{~B}_{3}$ and C Amplifiers.

Unit-3: Operational Amplifiers (Black Box approach):
Chatacieristics of an Ideal and Practical Op-Amp (1C 741), Open-loop\& Closed-loop Gain GMRR, concept of Virtuat ground, Applications of Op-Anps; (1) Inverting and Noi-inverting Anylifiefs (2) Adder, (3) Subtractor, (4) Differentiator (5) Integrator (6) Zero Crossing Detector. (13 Lectures) Sinusoidal Oscillators: Barkhausen's Criterion for 'Selfsustained Oscillations. Determination of Frequency of RC Oscillator

Unit-4: Instramentations:
Introduction to CRO: Block Diagram of CRO. Applications of CRO; (1) Sudy of Waveform, (2) Medsurenent of Voltage Current, Frequency and Phase, Differenee. Power Supply: Halfwave Rectifiers. Centre-tapped and Bridge Fullwwave Rectifiers Calculation of Ripple Factor and Recifieation Rrficiency, Basic idea ibout capacitor hitem, Zener Diode and Voltage Regulation

Timer iC: IC 555 Pin diagram ind its uqplication as Astable \& Monostable Multivibrator

Referenice Boooles:

- Electronie devices and circuity S. Saliyahanau and N Suresphotemar. 2012, Tata

Mo-Gray Hill.

- Microclectronic Circuits, M.H. Rashid, 2 id Edn; 2011 , Oengage Learning
- Modern Electronic Lnstrumentation \& Measurement Tech.Heltrick\&Cooper, 1990, PHI Leearning.
 Hill
 Pvis. Lid.
- OP-AMP and Lineare Digital Circuitsi; R.A. Gadyakwad, 2000, PHi Learining Pul Lid.

DSE 551: Digital and Analog Circuits and Instruments Lab

I. 'To measure (a) Voltage, and \&bryequency of perjodic waveform using a.CRO
2. To verify and destit ANB, OR NOTA Aad XOR gafes using NAND gates.
3. To minimize a given logic circuit.
4. Halfiadder, Full adder and 4bil Binairy Adder
5. Adder-Subtractor using Full Adder 1.C.
6. To design an astable multivibrator of given specifications usinge 555 Timer.
7. To design a monostable multivibrator of given specifications using 555 . 1 imer
8. To study IV characteristics of PN diode, Zener and Light emiting diode.
9. "Lo study the characteristios of a Transistor in CE configuration.
10. To design a CA amplifier of a given gain (mid-gain) using voltage divider bias.
11. To destgo an inverting amplifier of gyen gain using Op-anp. 741. and study its frequency response.
12. To design a non-inverting amplifier of given gain using Op-amp 741 and study ils Prequency Response.
13. To stady a precision Differential Amplifier of given L/O specification usint Op- amp.
14. To invostigate the use of an opamp as a Differentiator
15. To design a Wien Bridge Oscillator using an op-amp:

Reference Books:

- Basic Electronics: A text lab manual, P.B.Zbar. AP.Matvino, M.A.Miller; 1994, Mc-Graw H1ll.
- Electronics: Pundamentals and Applications, J.D. Ryder, 2004. Prentice Hall.
- OP=Amps and Linear Integrated Circuit, R. A Gayakwad, 4 edition, 2000, Prentice Hall.
- Electronic Principlé, Abbert Malvino, 2008, Tata Me Oraw Hill.

Introduction and history of polymeric:materials:
Different schemes, of classification of polymers; Polymer nomenclature, Molecular forces and chemical bonding in polymers, Texture of Polymers.

Functionality and its importance:

Criteria. For synthetic polymer formation; elassification of polymerization processes, Relationships between. functionality extent of reaction and degree of polymerization. Bifunctional systems, Poly-functional systems:

Kinctics of Polymerization:

Mechanism and kinctics of step growth; radical chain growth, ionio chain (both cationic ànd anionic) and, coordination polymerizations, Mechanism and kinetics of copolymerization, polymerization techmiques.

Crystallization and erystallinity:

Determination of crystalline melting point and degree of crystallinity, Morphology of ciystalline polyiners, Fietors: affecting orystalline melting point.

Nature and structure of polymers Structure Property relationships.
Determimation of molecular aveight of polymers $\left(M_{m} M_{4 n}\right.$ ete) by end group analysis, viscometry, light secttering andesnotic pressure methods. Molecular weight distribution and its signidicance Polydispersity index.

Glass transition temperature (T) and determination of Tg , Free volume theory, WLF equation, Factors affecting elass transition temperature (Tg).

Polymer Solution - Criteria for polymer solubility, Solubility parameter Theriniodynamies of polymer solutions, entropy, enthalpy; and free energy chaige of mixing of polymers solutions, Flory lluggins theory, Lower and Upper critical solution temperatures:

Properfies of Polymers (Physical, themal, Flow \& Mechanical Properties).
Brice bitroduction to preparation, structure properties and application of the fôllowing polymers: polyoletins, polystyrene and styrene copolymers, poly(vinyl chlotide) and related polymers, poly(vinyl acetate $)$ and related polymers, acrylic polymers. huoro polymers, polyanides and related polymiers. Phonol formaldehyde resins (Bakelite. Novalac), polyurethanes, silicone polymers, polydieries,

Polycarbonates, Conducting Polymers, Epolyaceiylene, polyaniline, poly(p-phenylene sulphide polypyiroles polythiophene)].

Reference Books:

* Scymour's Polymer Chemistry, Marcel Dekkert Inc,
- G. Odian: Principles of Colymerization John Wiley,
* F.W, Billmeyer: Text Book of Polymer Science, Johin Witey.
- P. Ghosh: Polymer Science \& Techiology, Tata Mcgraw-Hill.

DSE 552: Polymer Chenistry-Lab
(Credits 2)

1. Polymer synthesis

1. Free radical solution polymerization of styrene (St) / Methyl Methacrylate. (MMA) / Methyl Acrylate (MA) / Acrylie acid (AA),
a. Purification of monomer
b. Polymerization using benzoyl peroxide (BPO) / 2,2"-azo-bis-isobutylonitulife (AIBN)
2. Preparationol nylon $66 / 6$
3. Interfacial polymerization, preparation of polyester from ispophthaloyl chloride (IPC) and pheniolphthatein.
a. Preparation of IPC
$\mathrm{b}_{4}{ }^{\prime}$ Purification of TPC
c. Interfacial polymerization
4. Redox polymerization of acrylamide
5. Precipitation polymerization of acrylonitrile
\$. Preparation of urea-formaldehyde resin.
6. Preparations of novalac resin/resold resin.
7. Microscale Emulsín Polymerization of Poly(methylacrylate).

Polymer characterization

1. Determination of molecular weight by viscometry: (a). Polyaucrylaunideag NaNO solution (b) (Poly vinyl proplylidine (PVP) in water
2. Determination of the viscosity-average molecular weight of poly(vinyl alcohol).(PVOH) and the fraction of "head-to-head"; monomer linkages in the polymer.
3. Determination of molecular weight by end group analysis: Polyethylene glycol (PEG) (OH group)
4. Testing of mechanical properties of polymers.
5. Determination of hydroxyl number of a pelymer using eolormetric method.

6. Estimation of the amount of HCHO in the given solution by sodium sulphite method
7. Instrumental Techniques
8. IR studies of polymers
9. DSC analysis of polymers
10. Preparation of polyacrylamide and its electrophoresis
*at least 7 experiments to be carried out.

Reference Books:

- Malcohm P. Stevens, Polymer Chemistry: An Introduction, $3^{\text {rd }}$ Ed.
* Harry R. Allcock, Frederick W. Lampe and James E. Mark, Contemporary Polymer Chemistry, $3^{\text {rd }}$ ed. Prentice-Hall (2003)
* Fred W. Billmeyer, Textbook of Polymer Science, $3^{\text {rd }}$ ed. Wiley-Interscience (1984)
- Joel R. Fried, Polymer Science and Technology, $2^{\text {nd }}$ ed, Prentice-Hall (2003) • Petr Munk and Tejraj M. Aminabhavi, Introduction to Macromolecular Science, $2^{\text {nd }}$ ed. John Wiley \& Sons (2002)
- L. H. Sperling, Introduction to Physical Polymer Science, $4^{\text {lh }}$ ed. John Wiley \& Sons (2005)
- Malcolm P. Stevens, Polymer Chemistry: An Introduction, $3^{\text {rd }}$ ed. Oxford University Press (2005)
- Seymour/ Carraher's Polymer Chemistry, $9^{\text {ihh }}$ ed. by Chanles E. Carraher, Jr. (2013).

$\mathrm{R}_{\mathrm{i}} \mathrm{R}_{2}, \mathrm{R} 3$ as vector sjpaces over R, Standard basis for each of them. Conncept of Lineair Indeperidenee and exaniiples of difilerent bases. Subspaces of R2, R3.

Tranislation, Dilationt Rotation, Reflection in a point, lioe and plane. Matrix. form of basto geomefric transformations, Jiterpreiation of eigen values and eigen vectors fọ such tivansformations and eigen spaces as livivariant subsepaces:

Types of matrices, Rank of m matrix Invariance of rank under elementary transformations. Reduction to normal form, Solations of linear honôgencous and honihonogéneous equations with number of equations didanknowns. upto tounc

Matrices in diagonal form: Reduction to diagonal form uplo matrices of opder 3. Computation of matrix inverses using eleméntary row opprations. Runik of matrix. Solutions of a systen of linear équations using matrices.

Books Recommended

1. A1, Köstrikin, Introduction to Algebtrá, Springer Verlag 1984.
2. S. H. Frfedberg, A. Ls Insel and L. E. Spence, Linear Algebra, Prentice Hall of Modia Pvt Led. New Delhi, 2004"
3. Richard Bronson, Theory and Problems of Matrix Operations, Pata McGraw Hill, 1989.

(Elective paper) DSE 504 : Solid State Physics

Unit1:Crystal Structure: Solidst Amorphous and Grystalline Materisis \&atice Translation Vectors: Lattice with ä Basis . Sentral 'fud Non-Cential Elements. Unt Celf: Miller Indices. Reciprocal Lattice, Types of Latices. Brilloum Zones, Ditiraction of X-rays by Crystals. Brages Law. Atomic and Geometrical Fuctor:

Unit2:-Elementary Lattice Dynamicss Lattice Vibiations and Phonopss Linear Monoatomic and Diatomic Chains. Acoustical and Optical Phonons. Qualitative Description of the Phonon Spectrum in Solids: Dulong and Pett's Law Einstein and Debye theories of speciffic heat of solids: ${ }^{3}$ taw

Unit3--Magnetic Properties of Matter: Dia-- Para, Ferri- and Ferromagnetic Materials; Classical Langevin. Theory of dia and Paramagnetic Domains Quantum Mechanical Treatiment of Paramagnetism. Curie's law Weiss fobeory of ferromagnefism and Feromagnetic Domains. Discussion of B-H Curve. Hysteresis and Energy logs.

Unit4-Dielcetric Properities of Materials: Polarization. Local. Electric. Field at an Atom. Depolarization lifeld, Electric Susceptibility, Potarizability, Clausius Mosotti Equation, Classical Theory of Electric Polarizability Normal and Anomalous Dispersion, Cauchy and Sellimelr relations, Langevin-Debye equation Complex Dielectric Constant. Optical Phenomena. Applićation: Plasma Oscillations, Plasnia Prequénęy Plasitions:

Unitsi-Elemenfary bard theory: kronig Penny model. Band Gaps. Conductors, Semiconductors and insulators, P and N eype: Semiconductors. Conductivity of Semiconductors, mobility; Hall Effect, Hall coefficient.
Superconductivity. Expermental Results: Critical Peniperature Eriticel magnetic feld. Meissner effect. Type 1 and type 11 Superconductors London's Equation and Penetration Depth. Isotope effect.

Referénce Books:

- Introduction to solid State Physics, Charles Kittel, 8 Edi Ed 2004, Wiley India Put. Ltd

- Introduction to Solidss Leonid V. Azaroff 2004, Tata Me-Giraw Hill
- Soljd State Physics, Neil W_{a}. Asheroft and N_{q} Dayid Mermin, 1976, Cẹngage Leáring
- Solid-state Physies. H. fbach and H. Lath, 2009 Springer
* Llementaty Solld State Physics. 1/e M. Allomar 1999: Pearson India
- Solid State Physics, MiA. Wahab, 2011, Narosa Publication

1. Measurement of susceptibility of paramanetic soluturin (Quinck's's Tupe Melliọd)
2. To measure the Magnetic susceptibiliy of Solids,
3. To determine the Coupling Coefficient of a Piczodectric ofystal.
4. To measure the Dielectric Constant of a dietectric Materials with frequency
5. To determine the complex dielectric constant and plasma frequency of metal using Surface Plasmon resonance (SPR)
6. To determine the refractive tidex of a dellectric layer using SPR
7. To study the PE Hysteresis loop of a Ferroclectite Crystal,
8. To draw the BH curve of iron using a Solenoid and deternine the energy loss from Hystercsis.
9. To measure the resistivity of a semiconductor (Ge) crystal with temperature by four- probe neehod (from room temperature to $150^{\circ} \mathrm{C}$) and to decermine its band gap.
10. To determine the Hall coefficient of a semiconductor sample.

Reference Books

- Advanced Practical Physics for students, B.L. Flint and H.T. Worsuop, 1.971, Asia Publishing Housce.
- Advanced level Pliysies Practicals, Michael Nelson and Jon M, Ogbori4. $4{ }^{\text {th }}$ Edition, reprinted 1985, Heinemann Educational Publishers
- A. Text Book of Practical Physics, Indu Prakash and Ramakrishina, $11^{\text {h }}$ Ed, 2014, Kitabo Mahail, New Delhi
- Elements of Solia Siate Plysies, J.P. Srivastave 2 $^{\text {nd }}$ Ed., 2006, Prentice-Hall of thdia

Thasics:
Constants, variables, bits, bytes, binary and ASCH ormats, arithmetic expressions, hieratchy of operations, inbuilt functions. Elements of the BASIC language. BASIC keywords and commands. Logical and relative operators. Strings and graphics: Compiled versus interpreted languages. Debugging. Simple prograins using these concepts. Matrix addition and multiplication: Statistical analysis.

Numerical methods:

Roots of equations: Numerical methods for roots of equations: Quadratic formula, itcrative method; Newton-Raphson method, Binary bisection and Regula-Falsi,

Differential calculus; Numerical differentiation.

Integral colculus Numerical integration (Trapezoidal and Simpson's rule), probability distributions and mean valués.

Simultaneous equations: Matrix manipulation. addition, multiplication. Gauss-Siedal method. Interpolation, extrapolation and curve futing: Handling of experimental data.

Concephal background of notecular modelling. Potential energy surfaces. Elementary ideas of molecular mechasies and practical MO methods.

Reference Books:

1. Hartis, D_{i} C. Ouantitative Chemical Análysis. $6^{\text {th }}$ Ed., Freeman (2007) Chapters 3-5.
2. Levie, R: de, How to use Excel in analyicol chemistry and In general scientific data anabside, Cambridge Univiv Press (2001) 487 pages.
3. Noggle, J. HL Physical chenispy on a Microcomputer. Little Brown \& Co .(1985).
4. Venit, S.M. Programming in BASIC Problem solving with structure and style: Jaico Publishing House: Dellii (1996):

DSE 555: Applications of Computers in Cleemistry Lab
Computer programs based on numerical methods for

1. Roots of equations: (e.g: volume of van der Wasls gas and comparison with deal gas pll of a weak acid).
2. Numerical differentiation (e.g. change in pressure for small change in volume of a vari der Walls gas, potentiometric titrations).
3. Numerical integration (e.8. entrogy/ eathalpy change from heat capacity data), probability distributions (giskindectic theory) hand mean filues.
4. Matrix operations. Application of Gauss-Sicder method in colourimetry.
5. Simple exercises using molecular visualization software.

Reference Books:

- MeQuartie, D. A. Mathematics for Physical Chemistry University Science: Books (2008).
- Mortiner, R. Mathematics for Physical Chemistry. $3^{\text {to }}$ Ed. Elsevier (2005).
- Steiner, E. The Chemical Maths Book Oxford University Press (1996).
- Yates, P. Chemicáal Calculations $2^{\text {nd }}$ Ed. CRC Press (2007).
- Haris, D. C. Quantitative Chemical Arabsis. 6 © Ed.s Freeman (2007) Chaplers 3-5.
- Levie, R de, How to use Excel in analytical chemistryy and in general sctientific data analosit. 1 Canbiidge Univ. Press (2001) 487 pages.
- Noggle, 山. H: Physical Chemistry on a Microcomputer. Little Brown \& Co. (1985).
- Venit; SM. Progranming in BASTC Problen solving will structure and style Jaico
- Publishing House; Delht (1996).

SEVESSTER-VI

(Elective paper) DSE 601: Elements of Modern Physics
(Credits 4)
Unit1:-Planck's quantum, Planck's constant and light as a collection of photons. Photo-electric effect and Compton scattering. De Broglie wavelength and matter wavess? Davisson-Germer experiment. Problems with Rutherford model instability of atoms and observation of discrete atomic spectra; Bohr's quantization rule and atomic stability, calculation of energy levels for hydrogen like atoms and their spectra:

Unit2:-Position measurenent- gamma ray microscope thought experiments. Wave-particle duality, Heisenberg uncertainty priniciple impossibility of a particle following a trajectory; Estimating minimum energy of a confined particle using oncertainty principle; Energy-time uncertainty primeciple.

Unit3-Two stit interfercrece experiment with photoiss, atoms and particles linear superposition prineipleas à consequence; Matter waves and wave amplitude; Schrodinger equation for nön-elativistic particles; Momentum and Energy operators; stationary states; physical interpretation of wavefunction, probabilities and normalization Probability and probability current densities in, one dimension.

Unit4:-One dimensional infintely rigid box energy eigenyalues and eigenfunctions, normalization; Quantum döt as ex example; Quantuṇ méchanical scattering and tunnelling in one dimension aciods a step potential and across a fectangular potential barrier.
Sire and structure of atomic aucleus and its relation with atonice weight limpossibility of an electron being in the mucleus as a consequence of the uncertainty principle, Nature of nuclear force, NZ graph, scmi-empirical mass formuta and binding energy.

Units:-Radioactivity: stability of hucleus; Law of radioactive decay; Mean life \& half-life; decays Bdecay - energy released, spectrum and Paulis prediction of reutrino γ - ray emission:
Fission and fusion - mass defficit, relativity and gencration of cnergy; Eission - natuire of fragments. and envission of neutrons Nuclear reacior slow neutrons interacting with Uranum 235; fusion and thermonuclear reactions.

Reference Books:

*. Concepts of Modern Physics, Arthur Beiser, 2009, MeGraw-Hil!

a. Six Ideas that Shaped Plyysics:Particte Behave tike Waves, Thomas A. Moore, 2003; McGraw Hitl

- Quantum Physics, Berkeley Physics Course Vol.4. E,H. Wichiman, 2008, Tata MoGrawiHh Co.
- Modem Physics, R.A. Serway C. Möses, and C.A.Moyer, 2005. Cengage Learning

DSE 651: Elements of Modern Physics- Lab

1. To determine work function of material of filanhent of directity heated vacuum dixde.
2. To determite value of Planickets constant using L,EDS of at least 4 different colouts.
3. To determine the fonizat lom potenital of mercury.
4. To determine the wavelength of H-alpha emission line of lydrogen atoin,
5. To determine the absorption tines in the retational spectrim of lodine vapour.
6. To study the diffraction patterns of single and double slits using laser source and measure its intensity variation using Pliotosensor and compare with incoherent source : Na light,
7. Photo-electric effect: photo current versus thitensity and wavelength of light; maximum eriergy of photo-electrons versus frequency of light
8. To deternine the value of efm by magnetic focusing.
9. To setup the Millikain oil drôp apparatus and determine the charge of an electron.

Reference Books:

- Advanced Practical Physics for students, B.L.Fİnt \& HTT.Woisnopp, 1971; Asia Publishing House.
- Advaniced level Pliysics Practicals, Michael Nelson and Ion M. Ogborn, $4^{\text {in }}$ Edition, reprinted
1985 , Heinemann Educational Publishers
- AText Book of Practical Physics, Indu Prakash and Rạnakrishnia, $18^{\text {is. }}$ Editiona, 2011 , Kitab Mahat, New Dellit:
(Elective paper) DSE 602: Instrumental Methods of Cliemical Analysis (Credits 4) Introduction to spectroseopie methods of analysis:
Recap of the spectroscopic methods covered in detail in the core chemistry syllabus Treatment of analytical data, including error analysis. Classification of analytical methods and the types of instrumental methods. Considerafion of electromagietic radiation.

Molecular spectroscopy:

Lufrioped spectroscopy:

Interactions wilh môleculess: absorption and scittering. Mcans of excitation (itgh sources), separation of: spectrum (wavelength dispersion, time resolution), detection of the signal (heat; differentiat. detection), interpretation of spectrum (qualitative, mixtures; resolution) advantages of Fourier Transform (FIIR), Samples and results expected. Applications: Issues of quality asstranee and quality control, Special problems for portable instrumentation and rapid detection.

UVVIsiblef Near IR - emission, absorption, fluorescence and photoaccoustic. Excitation sources. (lasers, time resolution), wavelength dispersion (gratings, prisins, interference filters, laser, placement of sample relative to dispersion, resolution), Detection of sinnat fohotoceills.
photomultipliers, diode arrays, sensitivity and S / N), Single and Double Beam instruments, Interpretation (quantification, mixtures, absorption vs. fluorescence and the use of time, photoaccoustic, flworeseent tags).

Separation techniques

Chromatography: Gas chromatography, liquid chromatography, supercritical fluids, Importance of column technology (packing, capillaries), Separation based on increasing number of factors (volatility, solubility, interactions with stationary phase, size, electrical field), Detection: simple vs. specific (gas and liquid), Detection as a means of further analysis (use of tags and coupling to IR and MS), Electrophoresis (plates and capillary) and use with DNA analysis.

Immunoassays and DNA techniques

Mass spectroscopy: Making the gascous molecule into an ion (electron impact, chemicat ionization), Making liquids and solids into ions (electrospray, efectrical discharge, laser desorption, fast atom bombardment), Separation of ions on basis of mass to charge ratio, Magnetic, Time of flight, Electric quadrupole. Resolution, time and multiple separations, Detection and interpretation (how this is linked to excitation).

Elemental analysis:

Mass spectrometry (electrical discharges).
Atomic spectroscopy: Atomic absorption, Atomic emission, and Atomic fluorescence. Excitation and getting sample into gas phase (flames, electrical discharges, plasmas), Wavelength separation and resolution (dependence on technique), Detection of radiation (simultaneous/scanning, signal noise), Interpretation (errors due to molecular and ionic species, matrix.effects, other interferences).

NMR spectroscopy: Principle, Instrumentation, Factors affecting chemical shift, Spincoupling, Applications.

Electroanalytical Methods: Potentiometry \& Voltammetry

Radiochemical Methods

X-ray analysis and eifectron spectroseopy (surface analysis)

Reference books:

- Principles of Instrumental Analysis - 6th Edition by Douglaṣ A. Skoog, F. James Holler, and Stanley Crouch (ISBN 0-495-01201-7).
- Instrumental Methods of Analysis, Zhh ed, Willard. Merritt, Deam, Settle.

- PiV. Atkins Physical Chemistry.
- GW:Castellan: Physical Chemistry.
* C.N. Banvell Fundanentals of Molecula Siectroscopy.
- Brai Sonith Inforad Spectial lite prefations - A Systematic:Approach:

W Wod Moore Physteal Chemistry.

DSE 652y Instrumental Méthods of Chemical Analysis-Lab
(Credits 2)

1. Safety Practices tinthe Chemistry faboratory
2. Determination of the isoelectric pH of a protein.
3. Jitration curve of an animo acid.
4. Determination of the vold volume of a gel filtation columin:
5. Determination of a Mixture of Cobalf and Nickel (UV/Vis spec)
6. Study of Electronte T ransitions in Organie Molecules (t.e., acetone in water)
7. UR Absorption Spectra (Study of Aldehydes and Ketonés)
8. Determination of Catcium, 1ron; and Copper HWood by Atomic Absorption
9. Quantitative Analysis of Mixtures by Gas Chromatographiy. $6, \mathrm{e}_{3}$ chforoform and carbon tetrachloride)
10. Separation of Carbohydrates by HPLC
11. Determination of Caffeine Beverages by HPLC
12. Potentiometric Titration of a Ghloride - lodide Mixture
13. Gyclie Voltanmetry of the PargegthiderFericy nide Couple
14. Nuclear Magnetic Resodance for for for som
15. Use of fluorescence to do presunptivelests to dentify bood or other body fluids.
16. Use of prosumptive tests" fot anthrax or cocaine

17 Collectioni preservation and control of blood evidence being used for DNA testing
18. Use of capillary electrophoresi with laser fluorescence detection for muclear DNA (Y chromosome only or multiple chromosome)
19. Use of sequencing for the analysis of mitochondrial DNA20. 1 aboutaty nanalys to confitim anithitax orcocaine
21. Defection in the field and confirmation in the faboratoty of flamiable accelerants or explosives
22. Detection of illegal drugs or sterolds mathtetes.
23. Detection of pollutants or tilegal dumping:
24. Pibre analysis:

It least 10 experiments to be performed.

Reference Books:

* Principle of Instrumental Analysis $=$. 6 th İdition by Douglas A. Skoog; F. James Holler and Stanley Crouch (ISBN 0-495012017),
- Instrumental Methods of Analysis, 7thed. Wilard, Merritt, Dean, Settle.

Iimits limits involving the poin at Infinity continuity, Properies cof complox rumbers, regions in the complex plane, functions of complex variable, mappings. Derivatives; differentation formulas, Cauchy-Riemann equations; sufficient eonditions for differentiability.

Analytic functions, examples of analytic functions, exponential function, Logarithmic function, trigonometric function, derivatives of functions; definite integrals of functions: Contours, Contour integrals: and its examples, upper bounds for modult of contour integrals. Cauchy-Goursat theorem, Cauchy integral formula.

Liouville's theorem and Taylor and Laurent series, and its examples.

Books Recommended

1. James Ward Brown and Ruel V. Churchill, Complex Vaniables and Applications, 8th Ed.; MeGraw - Hill International Edition, 2009.
2. Joseph Bak and Donald 1, Newman, Compley analysis, 2nd Ed, Undergraduate Texts in Mathematics: Springer-Verlag New York, Ine, New York, 1997.
(Elective paper) DSE 604: Complex Analysis Numerical Methods
Algorithms; Convergence, Bisection method; False position method, Fixed point iferation method. Newton's method, Secant method, LU decomposition, Gąus-Jacobi, Gauss-Siedel and SOR iterative methods.

Lagrange and Neyton interpolation linear and higher order, finite difference operators, Numerical differentiation: forward difference, backward difference and central Difference Integration trapezoidal rule, Simpson's rule, Euler's method.

Recommended Books

1. B, Bradie, A Friendly Introduction to Numerical Analysis; Pearson Educationn. India, 2007.
2. MiK. Jain, S.R.K. lyengat and R.K. Jain, Numerical Methods for Scientific and Engineering Computation 5 th Ed., New age !nteriational Publisher, Indas, 2007.

Thtroduction to Green Chomistry
What is Green Chemistry? Need for Green Chemistry. Goals of Green Chemistry. Limitations/ Obstacles in the pursuit of the goals of Green Chemistry.

Principles of Green Chemistry and Designing a Chemicalsynthesis

Tiwelve principles of Green Chemistry with theit explanations and examples. Designing Gireen Synthesis using these principles; Prevention of Waste/ byproducts maximum incorporation of the materials used in the process into the final produets (Atom Economy); prevention/ minimization of hazardous/ toxic products designing safer chemicals - different basic approaches to do so; selection of appropriate auxiliary substances (solvents, separation agents), green solvents, solventless processes, immobilized solvents and ionic tiquids; enėrgy requirements for reactions: - use of microwaves; ultrasonic energy; selection of stating materials; avoidance of unnecessary detivatization - careful use of blocking/protecting groups, use of catalytic reagents (wherever possible) in prefercnce to stoichiometric reagents designing of biodegradable products, prevention of chemical accidents strengthening development of analytical techniques to prevent and minimize the generation of hazardous substances in chemical processes.

Examples of Green Synthesis/ Reactions

1. Green :Synthesis of the foltowing compounds: adipic acid, eatechol; BUTP, mettiyl metbacrylate, urethane, aromatic amines (4-aminodiphenylamine) benzyl biouride, acetaldehyde, disodium iminodiacetate (alternative: to Strecker synthesis) citral, ibupròfen, parácetamool, furfural.
2. Microwaye assisted reations in water Hofmanin Blmanation, Hydrolysis (of benzyl chloride, benzamide, n-phenyl benzamide, methylbenzoate to benzole acid), Oxidation (of toluene, alcohols).
Microwave assisted reactions ini: organic solvents; Esterification, Fries rearrangement. Orthoester Claisen Rearangement, Diels-Alder Reaction; Dectrboxylation.
Microwave assisted solid state reactions? Deacetylation, Deprotection. Saponification of esters, Alkylation of reactive methylene compóunds, reductions. synthesis of nitriles from aldehydes: anhydrides from dícarboxylie acid; pyrimidine and pyridine derivatives: $1,2-$ difydrotriazine derivatives, benzimidazoles.
3. Ultrasound assisted reations Esterification, staponifications substitution reactions, Alkylations, oxidation, reduction, coupling reaction, Cannizaro reaction, Strecker synthesis, Reformatsky reaction.
4. Selective methylation of active methylene group using dimethylcarbonate Solid-state polymerization of amorplous polymers using diphenylcarbonate; Use of "Clayan"s as nonmetallic oxidative reagent for various reactions Free Radical Brominations Role of Tellurium in organic synthesest Biocatalysis in organic syntheses.

Future Trends in Green Chemistry
Oxidation reagents and catalysts; Biomimelicy mutilunctional retgents: Combinatotial grcen chemistry, Proliferation of solventless reactionsomoncovalont derivatization; Green chemistry in sustainable developinent.

Reference:Books:

- V.K. Ahhwalia \& M.R. Kidwai: New Trends in Green Chemistry, Anamalaya Publishers (2005)
* P.T. Anastas \& J.K. Warner: Oxford Green Chemistry Theory and Practical University Press (1998):
- A.S. Matlack Introduction to Green Chemistry, Marcel Dekker (2001),
* M.C. Cann \& M.E. Connely: Real World:cases in Green Chemistry, American Chemical Society, Washington (2000).
* M.A. Ryan \& M. Tinnesand, Introduction to Green Chemistry, American Chemical Socicty, Wäshington (2002).

DSE 655: Green Chemisfry Lab

(Credits 2)

1. Safer starting materials

The Vitamin C clock rcaction using Vitamin C tablets, tincture: of iodine, fiydrogen peroxide and liquid laundry starch:

- Effect of concentration on clock reaction
- Effect of temperature on clock reaction. (if possible)

2. Using renewable resources

Preparation of biodiesel from vegetable oil.

3. Avoiding waste;

Principle of atom economy.
Use of molccular tnodel kit to stimulate the: reaction to investigate how the atom economy can illustrate: Green Chemistry:

Preparation of propene by two methods can be studied
(1) Triethylamine ion $\mathrm{OH}^{\circ} \rightarrow$ piopene 4 timethylpropene + water
(11) lopropanol $\xrightarrow{\mathrm{H}_{2} \mathrm{SO}_{4} / \mathrm{A}}$ propene fo waier

The other types of reactions, tike addition, elimination. substitution and rearrangement should also be situdied for the calculation of atom economy.

4. Use of enzymes as eatalysts

Benzoin condensation using. Thiamine Mydrochloride as a catalyst instead of cyanide

Alternative Green solvents

5. Diels Alder reaction in water

Reaction between furan and mateic acid in water and at room temperature rather than in benzene and reflux.
6. Extraction of 1 -limonene from orange peel using liquid CO_{2} prepared form dry ice.
7. Mechanochemical solvent free synthesis of azomethines
8. Co-crystal controlled solid state synthesis $\left(\mathrm{C}^{2} \mathrm{~S}^{3}\right)$ of N -organophthalimide using phthalic anhydride and 3-aminobenzoic acid.

Alternative sources of energy

9. Solvent free, microwave assisted one pot synthesis of phthalocyanine comples of copper (II).
10. Photoreduction of benzophenone to benzopinacol in the presence of sunlight.

Reference Books:

* Anastas. P.T \& Warner, J.C. Green Chemistry: Theory and Practice, Oxford University Press (1998).
- Kirchoff, M. \& Ryan, M.A. Greener approaches to malergrachate chemmat... experiment. Amcrican Chemical Society, Washington DC (2002).
- Ryan, M.A. Introduction to Green Chemistry, Tinnesand; (Ed), American Chemical Society, Washington DC (2002).
* Sharma, R.K.; Sidhwani, I.T. \& Chaudhari, M.K, I.K. Green Chemistry Experiment: A monograph International Publishing House Pvt Lid. New Dethi. Bangalore CISBN 978-93-81141-55-7 (2013).
, Cann, M.C. \& Connelly, M. E. Reat wortd cases in Green Chemistry. American Chemical Society (2008).
- Cann, M. C. \& Thomas, P. Real world cases in Green Chemistry American Chemical Society (2008).
- Pavia, I). L. Lamponan,

Paper Code:-

The course shall comprise of the following:-

(1) Concent of Property vis- Intellectual Property:- Concept of Property and Theories of Property- An Overview, Theories of Intellectual Property Rights, Social and Economic Development and Role of Intellectual Property System, Need for Protecting Intellectual Property- Policy Consideration- National Perspectives and International Demands , Types of Intellectual Property- Origin and Development - an overview, Intellectual Property Rights as Human Right.
(2) Role of International Institutions:- World Intellectual Property Organization (WIPO), Function of WIPO, Membership of WIPO , Agreement between the WIPO and the WTO, Dispute Settlement-New Treaties.
(3) Copyright- National Perspective:- Copyright:- What and Why? Term of Copyright, Assignments and Licensing, Registration and Regulatory Authority, Procedure, Infringements and Remedies- Contractual, Civil, Criminal and Administrative, An Overview of International Perspective
(4) Trademarks:- Need and Emergence of Trade Mark Law, The Register and Conditions for Registration, Procedure for and Duration of Registration, Effect of Registration, Passing-Off and infringement of Trade Mark, Assignment and Transmission, Use of Trade Mark and Registered Users, Rectification, Correction of the Register and Certification of Trademarks, Appellate Board, Offences, Penalties and Procedure.
(5) Patent:- Meaning of Patent -Inventions- Concept of Novelty, Inventive step and UtilityInventions not Patentable --Process and Product, Patents- TRIPS Agreement (Article 27) Implications to Indian Patents System, Acquisition of Patent, Right of patents and other- Term, Exclusive Marketing Right, Surrender, Licenses, Revocation, Functionaries Under the Patent Act, Infringement of Patents and Remedies.

BOOK RECOMMENDED:-

Narayanan P, Law of Copy Right and Industrial Designs.
Narayanan P, Intellectual Property Law.
Copinger, Law of Copy Right. Lyenger,
Narayanan P,, Patent Law.
(Dr.) Faizan Mustfa . Copy Right Law (A Comparative Study)

